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Introduction

I typed these notes during winter term 2015/16 for a lecture on “von Neumann algebras and measured
group theory” given at the University of Münster, Germany. I intended to give a direct introduction
to II1 factors, circumventing any unnecessary complications that arise in the theory of non-finite von
Neumann algebras. The field of II1 factors developed rapidly during the last decade under the influence
of Sorin Popa and Stefaan Vaes. This makes me feel that it is a good moment to introduce people
working and studying in an environment mainly dominated by C∗-algebras to contemporary results and
techniques in theory of II1 factors. My course in Münster was aimed at an inhomogeneous audience,
consisting of master students specialising in operator algebras as well as doctoral students and post
doctoral researchers working with C∗-algebraic topics. Hopefully, these notes are a fruitful reference
for both.

1 Von Neumann algebras, II1 factors and Cartan subalgebras

Definition 1.0.1 (Von Neumann algebra). Let H be a (complex) Hilbert space and denote by B(H)
the *-algebra of bounded linear operators on H.

• The topology of pointwise convergence on B(H) is called the strong operator topology (SOT).
We have xλ → x in the SOT if and only if xλξ → xξ for all ξ ∈ H.

• The topology of pointwise weak convergence B(H) is called the weak operator topology (WOT).
We have xλ → x in the WOT if and only if ⟨xλξ, η⟩ → ⟨xξ, η⟩ for all ξ, η ∈ H.

A von Neumann algebra is a strongly closed unital *-subalgebra of B(H).

Remark 1.0.2. The Cauchy-Schwarz inequality says that ⟨Tξ, η⟩ ≤ ∥Tξ∥∥η∥, which shows that SOT
convergence of a net implies WOT convergence. Put differently, every weakly closed set is also strongly
closed.

Example 1.0.3. • B(H) itself is a von Neumann algebra.

• If A ⊂ B(H) is a unital C∗-algebra, then A
SOT

is a von Neumann algebra.

• If S ⊂ B(H) is any symmetric (i.e. S∗ = S) subset, then S′ = {x ∈ B(H) ∣ ∀y ∈ S ∶ xy = yx} is a
von Neumann algebra. (Exercise!)
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• Let λ be the restricted Lebesgue measure on [0,1]. We can represent L∞([0,1], λ) on
L2([0,1], λ) by pointwise multiplication. One can show that L∞([0,1], λ)′ = L∞([0,1], λ). So
L∞([0,1], λ) is a von Neumann algebra.

• If Γ is a discrete group, then its left-regular representation Γ→ U(`2(Γ)) is defined by λgδh = δgh.
We denote by L(Γ) = CΓ

SOT
the group von Neumann algebra of Γ.

Definition 1.0.4 (Commutant). Let S ⊂ B(H) be any subset. Then S′ = {x ∈ B(H) ∣ ∀y ∈ S ∶ xy = yx}
is called the commutant of S. More generally, if M ⊂ B(H) is a von Neumann algebra S′ ∩M is called
the relative commutant of S in M.

The following proposition describes a basic link between a geometric property (invariance of a subspace)
and an algebraic property invoking commutants. Despite its simple proof, it is the main ingredient of
the Bicommutant Theorem’s proof (See Theorem 1.0.6).

Proposition 1.0.5. Let A ⊂ B(H) be a *-algebra, K ≤ H a closed Hilbert subspace and p ∶ H → K the
orthogonal projection onto K.

• If p ∈ A, then K is invariant under A′ ⊂ B(H).

• If K is invariant under A, then p ∈ A′.

Proof. Assume that p ∈ A and let x ∈ A′. Then xp = pxp, meaning that xK ⊂ K. Vice versa, if we
assume that K is invariant under A, then for every x ∈ A we obtain xp = pxp. Since x is arbitrary and
A is a *-algebra, we obtain also px = pxp for all x ∈ A. This implies xp = px for all x ∈ A, meaning
that p ∈ A′.

Theorem 1.0.6 (Bicommutant theorem). Let M ⊂ B(H) be a unital *-subalgebra. Then the following
statements are equivalent.

• M =M′′.

• M is closed in the WOT

• M is closed in the SOT

Proof. We first show that every commutant is weakly closed. So let S ⊂ B(H) be some set and
Tλ → T be some net in S′ whose WOT limit lies in B(H). For arbitrary ξ, η ∈ H and s ∈ S, we obtain

⟨Tsξ, η⟩ = lim
λ

⟨Tλsξ, η⟩

= lim
λ

⟨sTλξ, η⟩

= lim
λ

⟨Tλξ, s∗η⟩

= ⟨Tξ, s∗η⟩
= ⟨sT ξ, η⟩ .

Since ξ, η ∈ H were arbitrary, this implies Ts = sT . So T ∈ S′.
By Remark 1.0.2 every weakly closed set is also strongly closed. So it suffices to show the following
statement in order to complete the proof. If M ⊂ B(H) is a unital *-subalgebra, then M′′ =MSOT

.
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To this end, note that M′′ is a strongly closed set containing M. So M′′ ⊃ MSOT
. Now let x ∈ M′′,

ε > 0 and ξ1, . . . , ξn ∈ H. We have to find y ∈ M such that ∥(x − y)ξi∥ < ε for all i ∈ {1, . . . , n}.
Consider B(H) acting on ⊕n

i=1H diagonally and denote ξ = ⊕n
i=1 ξi . The subspace K = Mξ ⊂ ⊕n

i=1H

is invariant under the action of M. Hence, the orthogonal projection pK ∶ ⊕n
i=1H → K is contained

in the commutant M′ ∩B(⊕n
i=1H). So M′′ ⊂ (M′ ∩B(⊕n

i=1H))′ ∩B(⊕n
i=1H) leaves K-invariant. We

obtain that
xξ = x1ξ ∈ xK ⊂ K .

By definition of K (= Mξ) there is an element y ∈ M such that ∥xξ − yξ∥ < ε. Now ∥xξ − yξ∥2 =
∑ni=1 ∥(x − y)ξi∥2 implies that ∥(x − y)ξi∥ < ε for all i ∈ {1, . . . , n}. This is what we had to show.

Remark 1.0.7. Note that the last two items of Theorem 1.0.6 are equivalent by a more fundamental
statement: every strongly continuous functional on B(H) is weakly continuous. This implies that a
convex sets is strongly closed if and only if it is weakly closed. (See for example p.127, Theorem 4.2.6
of Murphy’s book on C∗-algebras.)

Remark 1.0.8. The previous theorem characterises von Neumann algebras by two conditions of a very
different nature. One is algebraic, the other one is analytic. This should be considered as a hint that
we just found a mathematically very rich and interesting structure.

Definition 1.0.9 (Separable von Neumann algebra). A von Neumann algebra M is called separable, if
it acts on a separable Hilbert space.

1.1 Normal positive functionals on von Neumann algebras

We already saw that there are at least two natural topologies on a von Neumann algebra. They are
the most suitable to introduce von Neumann algebras. However, the right notion of continuity for
maps on von Neumann algebras is given by yet another topology.

Definition 1.1.1 (σ-weak topology). Let H be a complex Hilbert space. A net (xλ)λ of operators in
B(H) converges in the σ-weak topology to x ∈ B(H) if for all 2-summable sequences (ξn)n, (ηn)n in
H we have ∑n⟨xλξn, ηn⟩ → ∑n⟨xξn, ηn⟩.

There are several reasons why the σ-weak topology is natural. One fundamental theorem in the theory
of von Neumann algebras identifies it with the weak-* topology induced by some Banach space duality
M = (M∗)∗, where M∗ is actually a uniquely determined Banach space. Here we are interested in
characterising positive σ-weakly continuous functionals as those which resemble probability measures
(and hence obey Σ-additivity).

Proposition 1.1.2. Let ϕ ∶ M → C be a positive linear functional on a von Neumann algebra. Then
ϕ is σ-weakly continuous if and only if it is normal in the following sense: for all bounded monotone
sequences x1 ≤ x2 ≤ ⋯ ≤ λ1 of self-adjoint elements in M, we have ϕ(sup xn) = supϕ(xn).

The next proposition gives another reason why the σ-weak topology is natural. Further, it gives a
useful criterion to check σ-weak continuity in practice.

Proposition 1.1.3. A functional ϕ ∶M → C on a von Neumann algebra is σ-weakly continuous if and
only if its restriction to the unit ball (M)1 is weakly continuous.

Remark 1.1.4. Similar results as in Proposition 1.1.2 hold for other types of maps, such as *-
homomorphisms or more generally so called completely positive maps. In particular, conditional ex-
pectations, which will be introduced in Section 1.4.1, are of the latter kind.
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1.2 Finite von Neumann algebras

A general von Neumann algebra is very difficult to understand. We are going to focus on finite von
Neumann algebras whose definition will allows us to apply an abundance of Hilbert space arguments.

Definition 1.2.1 (Traces and finite von Neumann algebras). Let M be a von Neumann algebra. A
normal tracial state (or a trace for short) on M is a normal state τ ∶M → C such that τ(xy) = τ(yx)
for all x, y ∈M.

A von Neumann algebraM is finite if there exists a faithful family (τi)i of traces onM, i.e. τi(x∗x) = 0

for all i implies x = 0.

Remark 1.2.2. If M is a von Neumann algebra with a trace τ , then the GNS-construction gives
rise to a representation π ∶ M → B(L2(M,τ)). There is a canonical tracial vector 1̂ in L2(M). It
satisfies ⟨π(xy)1̂, 1̂⟩ = τ(xy) = τ(yx) = ⟨π(yx)1̂, 1̂⟩ for all x, y ∈ M. The representation π is σ-
weakly continuous, since τ is so. One can show (using σ-weak compactness of the unit ball M1) that
π(M) ⊂ B(L2(M,τ)) is a von Neumann algebra and π is a closed map for σ-weak topologies on M
and on B(L2(M,τ)) respectively. If we further assume that τ is faithful (τ(x∗x) = 0⇒ x = 0), then π
is injective and we can simply identify M its image π(M). We will make use of this fact regularly.

Definition 1.2.3. A pair (M,τ) of a von Neumann algebra with a faithful tracial state is called a
tracial von Neumann algebra. The norm ∥x∥2 ∶= τ(x∗x)1/2, x ∈M is called the 2-norm on M.

If there is no confusion about τ is possible, we just call M a tracial von Neumann algebra.

Proposition 1.2.4. The 2-norm of a tracial von Neumann algebra induces the strong topology on its
unit ball. That is, if (xi)i is a bounded net of elements of a tracial von Neumann algebras , then xi → x
strongly, if and only if ∥x − xi∥2 → 0.

Proof. Let (M,τ) be a tracial von Neumann algebra. As explained in Remark 1.2.2, we may assume
that M is represented on L2(M). Since ∥x∥2

2 = τ(x∗x) = ⟨x 1̂, x 1̂⟩, it is clear that strong convergence
implies convergence in ∥ ∥2. Assume that (xi)i is a bounded sequence converging to 0 in ∥ ∥2. First
observe that ∥x∗i ∥2

2 = τ(xix∗i ) = τ(x∗i xi) = ∥xi∥2
2. For y ∈M, we have

∥xi ŷ∥2 = τ(y∗x∗i xiy) = τ(xiyy∗x∗i ) = ∥y∗x̂∗i ∥2 ≤ ∥y∗∥2∥x∗i ∥2
2 = ∥y∥2∥xi∥2

2 .

So ∥xi ŷ∥2
2 → 0. Now let ε > 0 and ξ ∈ L2(M) an arbitrary unit vector. There is some y ∈M such that

∥ξ − ŷ∥ < ε. Further, (xi)i is bounded, so there is N > 0 such that ∥xi∥ ≤ N for all i . We obtain

∥xiξ∥2 = ∥xi(ŷ + (ξ − ŷ)∥2 ≤ ∥xi∥2∥ξ − ŷ∥2 + ∥xi ŷ∥2 ≤ N2ε + ∥xi ŷ∥2 → N2ε .

Since ε was arbitrary and N is independent of ε, it follows that ∥xiξ∥ → 0. This finishes the proof of
the proposition.

Remark 1.2.5. It is not true that the ∥ ∥2 and the strong topology agree on the whole of a von
Neumann algebra. A counterexample can be found by considering the trace on L∞([0,1]), which is
induced by the restricted Lebesgue measure.

Exercise 1.2.6. Find an unbounded sequence of elements in L∞([0,1]) which converge to 0 in ∥ ∥2,
but not in the strong topology!
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1.3 Group von Neumann algebras

Let Γ be a discrete group. Then the left-regular representation of Γ is λ ∶ Γ → U(`2(Γ)) defined by
λgδh = δgh. The group von Neumann algebra of Γ is

L(Γ) = λ(Γ)′′ = CΓ
SOT

. (Proof the last equality!)

Every group von Neumann algebra carries a natural trace τ(x) = ⟨xδe , δe⟩. Indeed, by definition τ is
weakly continuous (and hence strongly and σ-weakly continuous). So using continuity and linearity, it
suffices to check that τ(uguh) = τ(uhug) for all g, h ∈ Γ, which is easily done using the definition of τ .

In the following series of propositions we are going to show that τ is a faithful (Proposition 1.3.3).

Proposition 1.3.1. Let ϕ(x) = ⟨xξ, ξ⟩ be a vector state on a von Neumann algebra M. Then ϕ is
faithful if and only if ξ is separating for M (i.e. xξ = 0⇒ x = 0).

Proof. The follows right from the equality ϕ(x∗x) = ⟨x∗xξ, ξ⟩ = ⟨xξ, xξ⟩ = ∥xξ∥.

In light of the previous proposition, we want to check that the vector δe is separating for the von
Neumann algebra L(Γ). This is easily done using the following proposition.

Proposition 1.3.2. Let M ⊂ B(H) be a von Neumann algebra. Then ξ ∈ H is separating for M if and
only if it is cyclic for M′ (i.e. M′ξ ⊂ H is dense).

Proof. First assume that ξ is separating for M. Let K ∶=M′ξ. We have to show that K = H. Since K
is invariant under M′, the orthogonal projection pK ∶ H → K lies in M =M′′. Since pK is a projection,
also (1 − pK) is a projection, implying that (1 − pK)∗(1 − pK) = (1 − pK). So (1 − pK)ξ = 0 implies
(1 − pK) = 0. This shows that pK = 1 and hence K = H.
Now assume that ξ is cyclic for M′. Take x ∈M such that xξ = 0. We have to show that x = 0. Since
x ∈M, we have 0 =M′xξ = xM′ξ. Since ξ is cyclic for M′, it follows that xH = 0. But this shows that
x = 0, finishing the proof.

Now finally let us check that δe is indeed cyclic for the commutant of L(Γ). To this end, consider
the right regular representation ρ ∶ Γ → U(`2(Γ)) defined by ρ(g)δh = δhg. Note that this is a
right representation (i.e. ρ(gh) = ρ(h)ρ(g)). It is easy to see that R(Γ) ∶= ρ(Γ)′′ ⊂ L(Γ)′. Since
R(Γ)δe ⊃ CΓ is dense in `2(Γ), it follows that δe is a separating vector for L(Γ). The previous
discussion proves the following statement.

Proposition 1.3.3. Let Γ be a discrete group. The vector state τ = ⟨⋅ δe , δe⟩ defines a faithful normal
tracial state on the group von Neumann algebra L(Γ).

Remark 1.3.4. Let Γ be a discrete group and τ the natural trace on its group von Neumann algebra
L(Γ). Then the GNS-representation of L(Γ) with respect to τ is given by L(Γ) ⊂ B(`2Γ) with cyclic
vector δe . Indeed, the fact that τ is the vector state on L(Γ) associated with the cyclic vector δe
suffices to apply the uniqueness part of the GNS-theorem.

One important tool when studying group von Neumann algebras is the fact that we can consider
Fourier expansions of arbitrary elements in a group von Neumann algebra.
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Definition 1.3.5 (Fourier coefficients). Let Γ be a discrete group and x ∈ L(Γ). Then xg ∶= τ(xu∗g) is
called the g-th Fourier coefficient of x .

Proposition 1.3.6. Let Γ be a discrete group and x ∈ L(Γ) then x = ∑g∈G xgug where the sum
converges in ∥ ∥2.

Proof. For x ∈ L(Γ) note that xδe = ∑g∈G xgδg. For F ⊂ Γ finite write xF = ∑g∈F xgug. We have

(x − xF )δe = ∑
g∈Γ∖F

xgδg .

Hence
∥x − xF ∥2 = ∥(x − xF )δe∥ = ∥ ∑

g∈Γ∖F
xgδg∥ .

This converges to 0, since xδe = ∑g∈Γ xgδg is 2-summable. This leads to the desired conclusion.

1.4 The group-measure space construction

1.4.1 Conditional expectations

In this section we are going to introduce an important tool in von Neumann algebras. It is the basic
mean to link the members of an inclusion N ⊂ M of von Neumann algebras. In the definition of the
group-measure space construction it will play a crucial role.

Definition 1.4.1 (Conditional expectation). Let N ⊂M be an inclusion of von Neumann algebras. A
conditional expectation from M onto N is a unital norm contraction E ∶M → N satisfying E(n1mn2) =
n1E(m)n2 for all n1, n2 ∈ N and m ∈ M. A conditional expectation E is called normal if E(sup xi) =
sup E(xn) for all bounded monotone sequences x1 ≤ x2 ≤ ⋯ ≤ λ1 of self-adjoint elements in M.

Remark 1.4.2. A conditional expectation is normal if and only if it is σ-weakly continuous.

Example 1.4.3. Let Λ ≤ Γ be an inclusion of groups. Then L(Λ) ⊂ L(Γ) and there is a normal
conditional expectation E ∶ L(Γ) → L(Λ) satisfying E(ug) = ug1Λ(g) for all g ∈ Γ.

Exercise 1.4.4. Let Λ ⊴ Γ be a normal inclusion of groups. Show that for every trace τ on L(Λ) the
composition τ ○ E is a trace on L(Γ).

An important property of conditional expectations is the fact that they preserve positivity. This is the
content of the next proposition.

Proposition 1.4.5. Let E ∶M → N be a conditional expectation between von Neumann algebras. Then
E is positive, meaning that E(x) ≥ 0 for all x ≥ 0 in M.

Proof. Let x ≥ 0 be a positive element in M. If ϕ is a state on N, then ϕ ○ E is a unital contractive
state on M, so it is positive. Hence ϕ(E(x)) = ϕ ○ E(x) ≥ 0. This shows that E(x) ≥ 0 in N.

Definition 1.4.6. Let E ∶M → N be a conditional expectation between von Neumann algebras. Then
E is called faithful if E(X∗x) = 0 implies x = 0.

Proposition 1.4.7. Let E ∶ M → N be a conditional expectation between von Neumann algebras and
let ϕ be a faithful normal state on N. Then ϕ ○ E is a faithful normal state on M.
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Proof. From Proposition 1.4.5 we know that ϕ ○ E is a state for every state ϕ on N. So we have to
show faithfulness, assuming ϕ and E are faithful. Let x ∈ M and assume that ϕ ○ E(x∗x) = 0. Since
E(x∗x) ≥ 0 we find y ∈ N such that E(x∗x) = y∗x . Faithfulness of ϕ implies that y = 0 and hence
E(x∗x) = 0. We can now conclude by applying faithfulness of E.

1.4.2 Actions on standard probability measure spaces

Definition 1.4.8. A probability space (X,µ) is called standard probability space if the σ-algebra of
X, up to negligible sets, arises as the Borel σ-algebra of a Polish space (i.e. a separable completely
metrisable space).

If (X,µ) is a standard probability space, then Aut(X,µ) is the group of measure class preserving Borel
bijections, identifying two automorphisms if they agree on a set of full measure.

If Γ is a discrete group, then an action Γ
α↷ (X,µ) is a homomorphism Γ → Aut(X,µ). We call this

action

• probability measure preserving, if there is a probability measure ν on X which is equivalent to µ
(i.e. a set N ⊂ X is µ-negligible if and only if it is ν-negligible) such that every automorphism in
αγ preserves ν;

• essentially free if for every γ ∈ Γ the set Xγ = {x ∈ X ∣αγ(x) = x} is negligible;

• ergodic if every Γ-invariant Borel subset of X is either negligible or co-negligible.

Remark 1.4.9. Every standard probability measure space is isomorphic to [0,1]∪D with the restricted
Lebesgue measure and an atomic measure on the countable setD. We speak about standard probability
measure spaces though, in order to naturally include examples such as the product space {0,1}Γ in
our thinking.

Remark 1.4.10. We usually denote standard probability spaces by X, suppressing the notation of the
measure µ. Further, ’probability measure preserving’ is abbreviated ’pmp’. For simplicity, we refer
to ’essentially free’ actions as just ’free’. In this lecture free ergodic pmp actions of discrete groups
Γ↷ X will play a principal role.

Example 1.4.11. Let Γ be a discrete group and X0 some standard probability space. Then Γ acts on
the product measure space X = XΓ

0 by shifting indices (gf )(h) = f (g−1h). This action is called the
Bernoulli shift of Γ with base space X0. It is always probability measure preserving. If Γ is an infinite
group and (X0, µ0) is non-trivial (i.e. it is not isomorphic to one point), then every Γ-Bernoulli shift
is free and ergodic.

Exercise 1.4.12. Let Γ be an infinite discrete group and (X0, µ0) a non-trivial standard probability
measure space. Prove that Γ↷ (X0, µ0)Γ is free and ergodic.

Example 1.4.13. Let Γ ≤ G be a dense subgroup of a compact second countable group. Denote by
µ the normalised Haar measure on G. Then Γ↷ (G,µ) is a free ergodic pmp action.

Exercise 1.4.14. Prove that in the situation of Example 1.4.13, the action Γ↷ (G,µ) is free ergodic
and pmp.
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1.4.3 Fell’s absorption property

Theorem 1.4.15. Let Γ be a discrete group and U ∶ Γ → U(H) a unitary representation of Γ. Then
U ⊗ λ ≅ ⊕dimH λ.

Proof. We show that the map W ∶ H ⊗ `2(Γ) → H ⊗ `2(Γ) satisfying W (ξ ⊗ δg) = Ugξ ⊗ δg is a
well-defined unitary. Indeed, for finite linear combinations ∑g∈Γ ξg ⊗ δg we obtain

∥W (∑
g∈Γ

ξg ⊗ δg)∥2 = ∥∑
g∈Γ

Ugξg ⊗ δg∥2 = ∑
g∈Γ

∥Ugξg∥2 = ∑
g∈Γ

∥ξg∥2 = ∥∑
g∈Γ

ξg ⊗ δg∥2 .

So W extends to an isometry on H ⊗ `2(Γ) whose image is dense. This means that W is a unitary.

If ξ ∈ H and h ∈ Γ, we check that

(Ug ⊗ λg)W (ξ ⊗ δh) = (Ug ⊗ λg)(Uhξ ⊗ δh)
= Ughξ ⊗ δgh
=W (ξ ⊗ δgh)
=W (id⊗ λg)(ξ ⊗ δh) .

W (id⊗ λ) = (U ⊗ λ)W , finishing the proof of the theorem.

Corollary 1.4.16. Let Γ be a discrete group and U ∶ Γ → U(H) some unitary representation of Γ.
Then the representation U ⊗ λ ∶ Γ → U(H ⊗ `2Γ) extends to a strongly continuous representation of
L(Γ) on H ⊗ `2(Γ).

Proof. By Fell’s absorption property 1.4.15 we may assume that U is the trivial representation on
H. We obtain a *-representation of the group ring π ∶ CΓ → B(H ⊗ `2Γ) extending id ⊗ λ linearly.
If for every net (xi)i in CΓ converging to 0 in the σ-weak topology of L(Γ) also the image (π(xi))i
converges to 0 in the σ-weak topology of B(H ⊗ `2Γ), then π extends to L(Γ).
So let (xi)i be net in CΓ converging to 0 σ-weakly. Let (ξj)j and (ηj)j be 2-summable sequences in
H⊗`2Γ. Chose some orthonormal basis (en)n of H and write ξj = ∑n en⊗ξj,n , ηj = ∑n en⊗ηj,n. Then
the sequences (ξj,n)j,n and (ηj,n)j,n are 2-summable. Further

∑
j

⟨π(xi)ξj , ηj⟩ = ∑
j

⟨∑
n

en ⊗ xiξj,n,∑
n

en ⊗ ηj,n⟩

= ∑
j,n

⟨xiξj,n, ηj,n⟩

→ 0 .

This finishes the proof of the corollary.

1.4.4 Construction of the group-measure space construction

Definition 1.4.17 (Group-measure space construction). Let Γ ↷ X be a measure class preserving
action on a standard probability measure space. The group-measure space construction of Γ ↷ X is
the unique von Neumann algebra M = L∞(X) ⋊ Γ such that

• L∞(X) ⊂M,
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• L(G) ⊂M,

• M is generated by L∞(X) and L(G),

• ugxu
∗
g = gx , and

• there is a faithful normal conditional expectation E ∶M → L∞(X) such that E(ug) = δg,e .

Proposition 1.4.18. Let Γ↷ (X,µ) be probability measure preserving action on a standard probability
measure space. Then the group-measure space construction L∞(X) ⋊ Γ exists.

Proof. Replacing µ by some equivalent probability measure, we may assume that Γ ↷ X preserves
µ. Then the action of Γ induces a unitary representation on L2(X,µ) by f ↦ gf . (Here gf denotes
the function sending h to f (g−1h).) Denote this representation by g ↦ Ug. Then we obtain a
representation of Γ on L2(X,µ)⊗ `2(Γ) by g ↦ Ug ⊗λg. Corollary 1.4.16 says that U ⊗λ extends to a
representation of L(Γ) on L2(X,µ)⊗ `2(Γ). Now represent L∞(X) on L2(X,µ)⊗ `2(Γ) as f ↦ mf ⊗1.
It suffices to check that the action of ugf and gf ug on elementary tensors ξ ⊗ δh ∈ L2(X,µ) ⊗ `2(Γ)
agree, so as to conclude that ugf u∗g = gf in the von Neumann algebra M ∶= (L(Γ) ∪ L∞(X))′′ ⊂
B(L2(X,µ) ⊗ `2(Γ)). This is verified by a short calculation.

It remains to construct a faithful normal conditional expectation M → L∞(X). To this end consider
the coisometry V ∶ L2(X,µ) ⊗ `2(Γ) → L2(X,µ) projecting on L2(X,µ) ⊗ δe and identify the its image
with L2(X,µ). Then V f ugV ∗ = δg,ef for all f ∈ L∞(X) and g ∈ Γ. Note that we identify the two
representations of L∞(X) on L2(X,µ) ⊗ `2(Γ) and L2(X,µ), respectively. Let ι ∶ L∞(X) → M be the
inclusion map. Then E ∶= ι ○ AdV is a well-defined map from M onto L∞(X). By construction it is
contractive and it satisfies

E(f1f ugf2) = ι ○ V (f1f ugf2) = ι(V f1V ∗V f ugV ∗V f2V ) = E(f1)E(f ug)E(f2) = f1E(f ug)f2 ,

for all f1, f2, f ∈ L∞(X) and all g ∈ Γ. Linearity hence shows that E is a conditional expectation. Note
that E is normal as a composition of two normal maps. So it remains to show faithfulness of E. We
follow the strategy of the proof of Proposition 1.3.3. If x ∈M satisfies E(x∗x) = 0, then V x∗xV ∗ = 0.
Since V ∗ξ = ξδe for every ξ ∈ L2(X,µ), this implies x(ξ⊗ δe) = 0 for every ξ ∈ L2(X,µ). Now consider
the right regular representation id ⊗ ρ ∶ Γ → U(L2(X,µ) ⊗ `2(Γ)). Since (id ⊗ ρ)(g) commutes with
M for every g ∈ Γ, we see that x(ξ ⊗ δg) = 0 for every g ∈ Γ. Since vectors of this form span a dense
subspace of L2(X,µ) ⊗ `2(Γ), it follows that x = 0. So E is a faithful conditional expectation.

Remark 1.4.19. The group measure space construction of an arbitrary measure class preserving action
exists. The poof of this is slightly more complicated than the one of Proposition 1.4.18.

We are next going to prove that the group measure-space construction is uniquely up to isomorphism.
To this end, we employ the GNS-construction with respect to a natural trace on L∞(X) ⋊ Γ.

Proposition 1.4.20. Let Γ↷ (X,µ) preserve the probability measure µ. Let τ0 be the trace on L∞(X)
defined by integrating against µ. Let M be a group-measure space construction for Γ ↷ X. Then
τ0 ○ E ∶M → C is a faithful trace on M.

Proof. Proposition 1.4.7 implies that τ = τ0○E is a faithful normal state on M. We only need to prove
that τ is tracial. To this end we have to check that τ(mn) = τ(nm) for all m,n ∈M. By linearity and
continuity, we may assume that m = mgug and n = nhuh for mg, nh ∈ L∞(X) and g, h ∈ Γ.

E(mn) = E(mgugnhuh) = E(mg gnhugh) = δg,h−1mg
gnh

9
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and
E(nm) = E(nhuhmgug) = E(nh hmguhg) = δg,h−1nh

hmg .

Since τ0 is defined by integration against the Γ-invariant measure µ, we obtain

τ(mn) = δg,h−1 ∫
X

(mg gnh)(x)dµ(x)

= δg,h−1 ∫
X

mg(x)nh(g−1x)dµ(x)

= δg,h−1 ∫
x

mg(x)nh(hx)dµ(x)

= δg,h−1 ∫
x

mg(h−1x)nh(x)dµ(x)

= δg,h−1 ∫
X

( hmgnh)(x)dµ(x)

= τ(nm) .

This is what we had to show.

Theorem 1.4.21. Let Γ ↷ (X,µ) preserve the probability measure µ. Let τ be the natural trace on
the group-measure space construction M of Γ↷ X. The GNS-construction of M with respect to τ is
given as follows:

• The GNS-Hilbert space is Hτ ≅ L2(X,µ) ⊗ `2(Γ),

• L∞(X) acts on L2(X,µ) ⊗ `2(Γ) by multiplication operators in the first tensor factor,

• Γ ⊂ L(Γ) acts via U ⊗λ on L2(X,µ) ⊗ `2(Γ), where U is the unitary representation of Γ induced
by the measure preserving action Γ↷ X, and

• the cyclic vector is 1X ⊗ δe ∈ L2(X,µ) ⊗ `2(Γ).

In particular, the group-measure space construction is unique up to isomorphism preserving the inclu-
sions L∞(X) ⊂ L∞(X) ⋊ Γ and L(Γ) ⊂ L∞(X) ⋊ Γ.

Proof. Let (M,τ) be given as in the statement of the theorem. Let M ⊂ M be the *-subalgebra
generated by L∞(X) and Γ. Note that every element in M is a linear combination of xug, with
x ∈ L∞(X) and g ∈ Γ.

• In order to simplify notation, we consider M as a subspace of the GNS-Hilbert space Hτ . If
g ≠ h are different elements from Γ, then xug ⊥ yuh with respect to τ for all x, y ∈ L∞(X).
Indeed,

⟨xug, yuh⟩ = τ((yuh)∗xug) = τ(y∗xugu∗h) = τ ○ E(y∗xugu∗h) = δg,hτ(y∗x) = δg,h⟨x, y⟩L2(X,µ)

So the map W ∶ M → L2(X,µ) ⊗ `2(Γ) satisfying W (xug) = x̂ ⊗ δg extends to a well-defined
isometry L2(M,τ) → L2(X,µ) ⊗ `2(Γ). Since W has dense range, it is a unitary. We showed
that Hτ ≅ L2(X,µ) ⊗ `2(Γ) via the unitary W .

10
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• Now let x, y ∈ L∞(X) and g ∈ Γ. Then

Wx(ŷ ug) =Wx̂yug = x̂y ⊗ δg = (x ⊗ id)(ŷ ⊗ δg) = (x ⊗ id)Wŷug .

So WxW ∗ = x ⊗ id on L2(X,µ) ⊗ `2(Γ).

• Now let x ∈ L∞(X) and g, h ∈ Γ. We obtain

Wug x̂uh =W ĝxugh = ĝx ⊗ δgh = (Ug ⊗ λg)Wx̂uh .

This shows that WugW ∗ = Ug ⊗ λg on L2(X,µ) ⊗ `2(Γ).

• Since W 1̂ = 1X ⊗ δe , this cyclic vector in L2(X,µ) ⊗ `2(Γ).

The uniqueness of the group-measure space construction is now clear from the first part of the
theorem.

The group-measure space construction is uniquely determined up to an isomorphism preserving the
inclusions L∞(X),L(Γ) ⊂ L∞(X) ⋊ Γ. Indeed, if M is a group-measure space construction, associated
with a pmp action Γ↷ X, then we can find a trace τ on M satisfying τ = τ ○E. The GNS-construction
with respect to such a state gives the representation that we constructed in the previous proposition.

Definition 1.4.22 (Fourier coefficients). Let Γ ↷ X be a pmp action of a discrete group and let
x ∈ L∞(X) ⋊ Γ. Then xg ∶= E(xu∗g) is called the g-th Fourier coefficient of x .

The next proposition is proved in a similar fashion to its analogue for group von Neumann algebras.
(Proposition 1.3.6)

Proposition 1.4.23. Let Γ↷ X be a pmp action of a discrete group and let x ∈ L∞(X) ⋊Γ. The sum
∑g∈Γ xgug converges in ∥ ∥2 to x in L∞(X) ⋊ Γ.

1.4.5 Cartan subalgebras

Definition 1.4.24 (MASAs). A maximal abelian von Neumann subalgebra A ⊂M is called MASA.

Remark 1.4.25. An abelian von Neumann subalgebra A ⊂M satisfies A′ ∩M ⊃ A. Now A is a MASA
in M if and only if A′ ∩M = A.

Definition 1.4.26 (Normaliser). Let N ⊂M be an inclusion of von Neumann algebras. Then NM(N) =
{u ∈ U(M) ∣uNu∗ = N} is called the group of normalising unitaries of N in M. The von Neumann
algebra NM(N)′′ generated by this group is called the normaliser of N in M. We call N ⊂M a regular
inclusion if NM(N)′′ =M.

Definition 1.4.27 (Cartan subalgebra). Let M be a finite von Neumann algebra. A MASA A ⊂ M is
called Cartan subalgebra of M if its normaliser equals M.

Proposition 1.4.28. Let Γ↷ X be a free pmp action on a standard probability space. Then L∞(X) ⊂
L∞(X) ⋊ Γ is a Cartan subalgebra.

11
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Proof. Let Γ↷ X be a free pmp action. Write A ∶= L∞(X) and M ∶= L∞(X) ⋊ Γ.

Note that A is generated by its unitaries. So (U(A)∪{ug ∣g ∈ Γ})′′ contains A and L(G) and it hence
equals M. So NM(A)′′ ⊃ (U(A) ∪ {ug ∣g ∈ Γ})′′ =M.

It remains to check that A ⊂M is a MASA. To this end let x ∈ A′ ∩M. We can write x = ∑g∈Γ xgug.
Assume that xg ≠ 0 for some g ≠ e. Let U ⊂ supp xg be a non-negligible subset such that gU ∩ U = ∅
and let p ∶= 1U ∈ A be the associated non-zero projection. Then

∑
g

1Uxgug = px = xp = ∑
g

xgug1U = ∑
g

xg1gUug .

So the g-th Fourier coefficient of px equals xg1U = xg1gU . Since gU ∩ U = ∅, this is a contradiction.
We showed that A′ ∩M = A, finishing the proof of the proposition.

Remark 1.4.29. A Cartan subalgebra of a finite von Neumann algebra arising from a group-measure
space construction as in the previous proposition is called group-measure space Cartan subalgebra.

1.4.6 Orbit equivalence and Cartan preserving isomorphisms

Definition 1.4.30 (Orbit equivalence). Let Γ ↷ X and Λ ↷ Y be two free actions on standard
probability measure spaces. They are called orbit equivalent if there is an isomorphism ∆ ∶ X ≅ Y of
such that Λ∆(x) = ∆(Γx) for almost every x ∈ X.

Definition 1.4.31 (Cocycle). Let Γ ↷ X be an action on a standard probability measure space and
let Λ be a group. A measurable map c ∶ Γ ×X → Λ is called a cocycle, if

c(gg′, x) = c(g, g′x)c(g′, x)

for all g, g′ ∈ Γ and almost every x ∈ X.

Proposition 1.4.32. Let Γ↷ X and Λ↷ Y be free actions of countable groups on standard probability
measure spaces and let ∆ ∶ X → Y be an orbit equivalence between these two actions. Then

c(g, x)∆(x) = ∆(gx) g ∈ Γ

defines an almost everywhere well-defined cocylce Γ ×X → Λ.

Proof. We first show that the equation c(g, x)∆(x) = ∆(gx) gives rise to a well-defined measurable
map c ∶ Γ ×X → Λ. Fix g ∈ Γ. Then

{x ∈ X ∣ ∃h ≠ h′ ∶ ∆(gx) = h∆(x) = h′∆(x)} ⊂ ⋃
h≠e

∆−1{y ∈ Y ∣hx = x}

is a countable union of negligible sets and it is hence negligible itself. So, up to negligible sets, c is
well-defined. Denoting by α the action of Γ and by β the action of Λ, we prove measurability of c .
For g ∈ Γ and h ∈ Λ fixed, {x ∈ X ∣ c(g, x) = h} is the set where αg and ∆−1 ○ βh ○ ∆ agree. Since
both these maps are measurable, it follows that {x ∈ X ∣ c(g, x) = h} is measurable. Since Γ and Λ are
discrete, we conclude that c is measurable.

Let deal with now deal with measure theoretic problems, making use of the fact that Γ and Λ are
countable. Considering a conegligible subset of X, we may assume that c(g, x)∆(x) = ∆(gx) for all

12
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x ∈ X and that Λ ↷ X is free in the set-theoretic sense of the word. Then we obtain for x ∈ X and
g, g′ ∈ Γ that

c(g, g′x)c(g′, x)∆(x) = c(g, g′x)∆(g′x) = ∆(gg′x) = c(gg′, x)∆(x) .

By freeness of Λ ↷ Y , this shows that c(g, g′x)c(g′, x) = c(gg′, x). This finishes the proof of the
proposition.

Definition 1.4.33 (Orbit equivalence cocycle). The cocycle defined in the last proposition is called an
orbit equivalence cocycle for (Γ↷ X) ∼OE (Λ↷ Y ).
Theorem 1.4.34. Let Γ ↷ X and Λ ↷ Y be orbit equivalent free pmp actions of countable groups.
Then there is an isomorphism ϕ ∶ L∞(X) ⋊ Γ→ L∞(Y ) ⋊ Λ such that ϕ(L∞(X)) = L∞(Y ).

Proof. Let ∆ ∶ X → Y be an orbit equivalence between Γ ↷ X and Λ ↷ Y . Introducing the action
λx ∶= ∆−1(λ∆(x)) on X, we may assume that X = Y and ∆ = id. Let c ∶ Γ ⋊ X → Λ be the orbit
equivalence cocycle.

For g ∈ Γ, h ∈ Λ let Ahg ∶= {x ∈ X ∣ c(g, x) = h} and consider the sum vg = ∑h uh1Ahg . Since the sets

(Ahg)h and (hAhg)h = (gAhg)h are pairwise disjoint, ∑h uh1Ahg is a sum of partial isometries with pairwise
orthogonal support and image projection. Hence ∑h uh1Ahg converges in the SOT and vg ∈ L∞(X) ⋊Λ

is well-defined.

We show that vg is a unitary for every g. This follows from the calculation

vgv
∗
g = ∑

h

uh1Ahgu
∗
h = ∑

h

1hAhg = ∑
h

1gAhg = 1 ,

and the fact that τ(v∗g vg) = τ(vgv∗g ) = 1. Here τ denotes the natural trace of L∞(X) ⋊ Λ.

The map g ↦ vg defines a unitary representation of Γ inside L∞(X) ⋊ Λ: we have

vgvg′ = ∑uh1Ahguh′1Ag′
h′
= ∑uhh′1(h′)−1Ahg

1
Ag

′
h′
= ∑uhh′1(h′)−1Ahg∩Ag

′
h′

and

(h′)−1Ahg ∩Ag
′
h′ = {x ∈ X ∣ c(g, h′x) = h and c(g′, x) = h′} ⊂ {x ∈ X ∣ c(g, h′x)c(g′, x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=c(gg′,x)

= hh′} .

This implies vgvg′ = vgg′ .
Let E ∶ L∞(X) ⋊ Λ→ L∞(X) be the natural conditional expectation. We obtain

E(vg) = ∑
h

E(uh)1Ag
h
= ∑

h

τ(uh)1Ag
h
= 1Age .

If c(g, x) = e, then gx = c(g, x)x = x . Because of freeness of Λ ↷ X, this implies Age is a negligible
set if g ≠ e and Aee is a conegligible set. So E(vg) = δg,e1. In particular, we have τ(vg) = δg,e ,
so that g ↦ vg extends to a representation of L(Γ) inside L∞(X) ⋊ Λ. Summarising we have found
L∞(X),L(Γ) ⊂ L∞(X)⋊Λ and the natural conditional expectation E ∶ L∞(X)⋊Λ restricts to the natural
trace of L(Γ). In order to conclude that the map ϕ ∶ L∞(X) ⋊ Γ → L∞(X) ⋊ Λ satisfying ϕ∣L∞(X) = id

and ϕ(ug) = vg is a well-defined isomorphism preserving the group-measure space Cartan subalgebra,
it remains to show that Ad vg ∣L∞(X) implements the action Γ↷ X. So let a ∈ L∞(X) and g ∈ Γ. Then

vgav
∗
g = ∑

h,h′
uh1Ag

h
a1
Ag

′
h′
u∗h′ = ∑

h

vh1Ag
h
av∗h = ∑

h

1hAg
h
ha = ∑

h

1gAg
h
ga = ga .

This finishes the proof of the theorem.
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We are going to prove the converse to the last theorem. Let us explain the strategy of proof and
assume that L∞(X) ⋊ Γ ≅ L∞(X) ⋊ Λ in a Cartan preserving way for two free pmp actions of Γ and
Λ on X. The most essential information that we obtain through this isomorphism is that there are
unitaries vh, h ∈ Λ which normalise the Cartan subalgebra L∞(X) ⊂ L∞(X) ⋊ Γ. Since this is the most
important information at hand, we need to study in full generality the normaliser NL∞(X)⋊Γ(L∞(X)),
which is done in Proposition 1.4.36. To this end, we need to do some technical work first.

Proposition 1.4.35. Let A be a separable abelian von Neumann algebra. Then there is a standard
probability space X such that A ≅ L∞(X). Further, if ϕ ∈ Aut(L∞(X)), there is a measurable isomor-
phism α ∶ X → X such that ϕ = α∗, i.e. ϕ(a) = a ○α for all a ∈ L∞(X).

Proof. Let A be a separable abelian von Neumann algebra and ϕ ∈ Aut(A). By definition of separability,
there is a Hilbert space of countable dimension H such that A ⊂ B(H). Taking a countable orthonormal
basis of H, we obtain a countable faithful family of tracial vector states (τn)n on A. Then τ ∶=
∑n∈N× 2−nτn is a faithful trace on A. From now on, ∥ ∥2 denotes the 2-norm induced by τ on A.
By construction of τ , we obtain an embedding L2(A, τ) ⊂ H⊕∞ into a Hilbert space of countable
dimension. We can hence find a countable ∥ ∥2-dense D set of A. Further, we may assume that
1 ∈ D and that D is ϕ-invariant. Let B = C∗(D) be the abelian C∗-algebra generated by D. Then
B is ϕ-invariant. We hence find a compact second countable space X such that B ≅ C(X). The
automorphism ϕ∣B defines a homeomorphism α ∶ X → X. Further, τ ∣B defines a faithful state, and
hence a Borel probability measure µ on X with full support. The GNS-representation of τ gives an
embedding B ↪ B(L2(X,µ)) such that L∞(X,µ) = BSOT = A. Since α∗ = ϕ∣B extends to a well-defined
automorphism of L∞(X,µ), it follows that α preserves the measure class of µ and α∗ = ϕ.

Proposition 1.4.36. Let Γ ↷ X be a free pmp action. If u ∈ NL∞(X)⋊Γ(L∞(X)), then there is a
partition X = ⊔Ag into measurable subsets and there are S1-valued elements ag ∈ L∞(Ag) ⊂ L∞(X)
such that u = ∑g ugag.

Proof. We write A = L∞(X) and M = L∞(X) ⋊ Γ. Let u ∈ NM(A). Denote by E ∶M → A the natural
conditional expectation and define Ag ∶= supp E(u∗gu) and ag = E(u∗gu). Using Fourier coefficients
(Proposition 1.4.23), we see that u = ∑g ugag. We then obtain

1 = uu∗ = ∑
g,g′

ugaga
∗
g′u

∗
g′ = ∑

g,g′

g(aga∗g′)ugg′−1 .

By uniqueness of the Fourier coefficients, we conclude that g(aga∗g′) = 0 if g ≠ g′ and ∑g g(aga∗g) = 1.
So X = ⊔gAg and ag ∈ L∞(Ag) is unitary, hence S1-valued. Further,

1 = u∗u = ∑
g,g′

a∗gu
∗
gug′ag′ = ∑

g,g′
a∗g( g

−1g′ag′)ug−1g′ .

Comparing Fourier coefficients, we see that ∑g a∗gag = 1, implying that X = ⊔g Ag. This finishes the
proof of the proposition.

Theorem 1.4.37 (Singer). Let Γ ↷ X and Λ ↷ Y be free pmp actions of countable groups. Then
(Γ ↷ X) ∼OE (Λ ↷ Y ) if and only if there is a *-isomorphism ϕ ∶ L∞(X) ⋊ Γ → L∞(Y ) ⋊ Λ such that
ϕ(L∞(X)) = L∞(Y ).
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Proof. In Theorem 1.4.34 we showed that orbit equivalence implies the existence of a Cartan preserving
isomorphism. So it remains to prove the converse implication. Identify L∞(X) ⋊Γ with L∞(Y ) ⋊ Y via
some Cartan preserving isomorphism. We may then assume that X = Y . Denote the natural unitaries
of L(Λ) ⊂ L∞(X)⋊Γ by (vh)h. Thanks to Theorem 1.4.36, we find for each h ∈ Λ a partition X = ⊔Agh
and S1-valued functions agh ∈ L∞(Agh) ⊂ L∞(X) such that vh = ∑g ugagh .
Fix g ∈ Γ and h ∈ Λ. If a ∈ L∞(X) then

ug1Ag
h
au∗g = vh1Ag

h
av∗h .

So Adug ∣L∞(Ag
h
) = Ad vh∣L∞(Ag

h
). Denoting the action of Γ by α and the action of Λ by β, we then

conclude that αg ∣Ag
h
= βh∣Ag

h
almost everywhere. For fixed g ∈ Γ all but countably many (Agh)h are

negligible, since they form a measurable partition of X. It follows that for almost every x ∈ X there is
some h ∈ Λ such that gx = hx . So gx ∈ Λx for almost every x ∈ X. Since Γ is countable, we conclude
that Γx ⊂ Λx for almost every x ∈ X. By symmetry, we obtain Γx = Λx for almost every x ∈ X.

1.5 Factors

Definition 1.5.1 (Factor). A factor is a von Neumann algebra M satisfying Z(M) =M ∩M′ = C1.

We start by characterising factors as simple von Neumann algebras.

Proposition 1.5.2. Let M be a von Neumann algebra. Then SOT-closed two-sided ideals in M are
precisely of the form zM for some central projection z ∈ Z(M).
In particular, M is a factor if and only M is simple, i.e. M does not contain any SOT-closed two-sided
ideals.

Proof. First it is clear that every central projection z ∈ Z(M) defines an SOT-closed ideal zM. So let
I ≤M be a two-sided SOT-closed ideal and let H be the Hilbert space on which M acts. Let K ∶= IH.
Then I can be considered as a strongly closed *-subalgebra of B(K), which acts non-degenerately.
Since I is a C∗-algebra, it contains a bounded approximate unit, so it follows that idK ∈ I ⊂ B(K),
which is the identity of I. We hence obtain pK ∈ I, where pK ∶ H → K is the orthogonal projection.
Further, K is invariant under M′ and M, so that pK ∈M′∩M = Z(M) by Proposition 1.0.5. So indeed
I = pKI = pKM for the central projection pK ∈ Z(M).
Now assume that M is a factor and let I ⊴ M be SOT-closed. Then I = zM for some projection
z ∈ Z(M) = C1. So I ∈ {0,M}, showing that M is simple. Assume that M is simple. If z ∈ Z(M) is
some non-zero projection, then zM =M, showing that z is invertible. So z = 1. Since Z(M) ≅ L∞(X)
for some standard probability measure space X, by Proposition 1.4.35, it follows now that Z(M) =
C1.

For later use, we observe that every trace on a factor is faithful. As it turn out, there is a unique trace
on every finite factor (Theorem 1.5.26)

Lemma 1.5.3. Let M be a factor and τ a trace on M. Then τ is faithful.

Proof. Let I = {x ∈ M ∣ τ(x∗x) = 0}. The inequality x∗y∗yx ≤ ∥y∥2x∗x shows that I is a left-ideal.
Further, τ(x∗x) = τ(xx∗), so that I is a two-sided ideal. The characterisation of factors as simple
von Neumann algebras from Proposition 1.5.2 now shows that I = 0. So τ is faithful.
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Definition 1.5.4. Let M be a finite factor (i.e. a von Neumann algebra which is a factor and finite).
If M is infinite dimensional, then it is called a II1 factor.

Remark 1.5.5. The name II1 factor stems from a classification of factors in different types In, n ∈
N ∪ {∞}, II1, II∞ and III. Since we focus on finite factors, we will not treat this classification, which
can be found for example in Dixmier’s book. (and any other book treating von Neumann algebras).

1.5.1 Group factors

The next proposition gives us a first source of II1 factors.

Proposition 1.5.6. Let Γ be a discrete group. Then L(Γ) is a factor if and only if Γ is icc, i.e. every
non-trivial conjugacy class of Γ is infinite.

Proof. First assume that there is a finite non-trivial conjugacy class {g1hg
−1
1 , . . . , gnhg

−1
n } in Γ. Then

z ∶= ∑ni=1 ugihg−1
i

is a central element of L(Γ). Since δe is separating for L(Γ), the fact that zδe ∉ Cδe
implies that z is not a multiple of the unit. This shows that L(Γ) is not a factor.

Assume that Γ is icc. Take z ∈ Z(L(G)) and consider ẑ = zδe ∈ `2(Γ). Then ẑ = ûgzu∗g = ugzu∗gδe =
ugzδeu

∗
g = ug ẑu∗g , where u∗g acts on the right of `2(Γ) via the right-regular representation. It follows

that ẑ is a conjugation invariant function in `2(Γ). Since every non-trivial conjugacy class of Γ is
infinite, 2-sumability implies that ẑ is a multiple of δe . Since δe is a separating vector for L(Γ), this
proves that z is a multiple of 1 ∈ L(Γ). So L(Γ) is a factor.

Exercise 1.5.7. The following groups are icc.

• Non-abelian free groups Fn.

• The group S∞ of finite permutation of a countable infinite set.

Example 1.5.8. The von Neumann algebras L(Fn), L(S∞) and L(Fn × S∞) are II1 factors.

1.5.2 Two factoriality criteria for group-measure space constructions

Proposition 1.5.9. Let Γ ↷ X be a pmp action of a discrete group. If L∞(X) ⋊ Γ is a factor, then
Γ↷ X is ergodic.

Proof. Assume that L∞(X) ⋊ Γ is a factor and take a Γ-invariant measurable subset A ⊂ X. Then
ug1Au∗g = 1gA = 1A for every g ∈ Γ. So 1A commutes with L∞(X),L(G) ⊂ L∞(X) ⋊ Γ. So 1A ∈
Z(L∞(X) ⋊ Γ) = C1, implying that A is either negligible or conegligible. This shows that Γ ↷ X is
ergodic.

Proposition 1.5.10. Let Γ↷ X be a free ergodic pmp action of a discrete group. Then L∞(X) ⋊Γ is
a factor.

Proof. Since L∞(X) ⊂ L∞(X) ⋊Γ is a MASA by Proposition 1.4.28, we have Z(L∞(X) ⋊Γ) ⊂ L∞(X).
Let a ∈ L∞(X) be central in the group-measure space construction. Then a = ugau∗g = ga for all g ∈ Γ.
So a is a Γ-invariant function. Let t be an essential value of a, i.e. z ∈ C such that {x ∈ X ∣ ∣a(x)−z ∣ < ε}
is non-negligible for all ε > 0. Since a is Γ-invariant, also {x ∈ X ∣ ∣a(x)− z ∣ < ε} is Γ-invariant for every
ε > 0 and hence it is conegligible by ergodicity of Γ ↷ X. This shows that a is almost surely equal to
z and hence Z(L∞(X) ⋊ Γ) = C1.
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Proposition 1.5.11. Let Γ ↷ X be an ergodic pmp action of an icc discrete group. Then L∞(X) ⋊ Γ

is a factor.

Proof. Let x ∈ Z(L∞(X) ⋊ Γ) and write x = ∑g∈Γ xgug. For h ∈ Γ, we have x = uhxu
∗
h =

∑g∈Γ
hxguhgh−1 = ∑g∈Γ

hxh−1ghug. Comparing Fourier coefficients, we see that xg = hxh−1gh for
all g, h ∈ Γ. Since Γ is icc and Γ↷ X is probability measure preserving, ∥ ∥2-summability of ∑g∈Γ xgug
implies that xg = 0 if g ≠ e. We showed that Z(L∞(X) ⋊ Γ) ⊂ L∞(X). Now we can proceed as in the
proof of Proposition 1.5.10 and use ergodicity of Γ↷ X to conclude the proof.

Example 1.5.12. If Γ is any infinite group, then non-trivial Bernoulli shifts Γ↷ (X0, µ0)Γ = (X,µ) are
free ergodic and probability measure preserving according to Exercise 1.4.12. Hence the von Neumann
algebra L∞(X) ⋊ Γ is a II1 factor.

1.5.3 Discrete factors and comparison of projections

We already noticed that projections and partial isometries play a crucial role in von Neumann algebras.
In this section we take the opportunity to study them in more detail. It seems due to reconsider the
polar decomposition, giving rise to an abundance of partial isometries in a von Neumann algebra.

The following notion of order on projections specialises the order on self-adjoint elements of a C∗-
algebra.

Definition 1.5.13. Let p, q ∈ B(H) be projections. We say that p ≤ q if pq = q.

Note that indeed, p ≤ q implies that q − p is a projection and in particular it is positive. We have
(q − p)∗(q − p) = q2 − qp − pq + p2 = q − p. Further, p ≤ q if and only if pH ⊂ qH.

Definition 1.5.14. Let x ∈ B(H) be an operator. The (geometric) image of x is the subspace xH ⊂ H
and the (geometric) support of x is the subspace (ker x)⊥. The image (projection) supp x of x is the
smallest projection p ∈ B(H) such that px = x and the support (projection) im x of x is the smallest
projection q ∈ B(H) such that xq = x .

Proposition 1.5.15. Let M be a von Neumann algebra and x ∈M. Then supp x, im x ∈M.

Proof. Since supp x = im(x∗), it suffices to shows that im x ∈ M. Denote by H the Hilbert space
on which M acts. The image xH is invariant under M′ and so is its closure xH. So the orthogonal
projection p onto xH lies in M. We show that p = im x . We have pxξ = xξ for all ξ ∈ H, so that
px = x follows. If q ∈ B(H) is another projection satisfying qx = x , then pH = xH ⊂ qH. So p ≤ q.
This finishes the proof of the proposition.

Proposition 1.5.16 (Polar decomposition). Let x ∈ B(H). Then there is a unique partial isometry
v ∈ B(H) such that

• v ∣x ∣ = x

• v∗v = supp x

• vv∗ = im x .

If M ⊂ B(H) is a von Neumann algebra and x ∈M, then also v , ∣x ∣ ∈M.
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Proof. Let x ∈ B(H). For every ξ ∈ H we have

∥∣x ∣ξ∥ = ⟨∣x ∣ξ, ∣x ∣ξ⟩ = ⟨∣x ∣2ξ, ξ⟩ = ⟨x∗xξ, ξ⟩ = ⟨xξ, xξ⟩ = ∥xξ∥ .

Denoting by K = ∣x ∣H and L = xH the support and the image of x , we see that v0 ∶ ∣x ∣ξ ↦ xξ defines
a unitary from K to L. Now let v be the partial isometry v = ιL ○ v0 ○ pK , where ιL ∶ L → H denotes
the inclusion of L and pK ∶ H → K denotes the orthogonal projection onto K. Now xξ = v ∣x ∣ξ for all
ξ ∈ H, showing that x = v ∣x ∣ indeed. By construction we have v∗v = supp x and vv∗ = im x .

Let us prove uniqueness of the decomposition x = v ∣x ∣. Assume that x = u∣x ∣ for some partial isometry
satisfying u∗u = supp x and uu∗ = im x . Since u∗u = supp x = supp ∣x ∣, it suffices to check u∣K = v ∣K .
On the dense subspace ∣x ∣H ⊂ K, this follows from the identity u∣x ∣ = x , which implies u∣x ∣ξ = xξ = v ∣x ∣ξ
for all ξ ∈ H. Continuity now finishes the proof of uniqueness.

Now assume that x lies in a von Neumann algebra M ⊂ B(H) and denote by x = v ∣x ∣ its polar
decomposition. Functional calculus says that ∣x ∣ ∈M. Since ∣x ∣H is a subspace invariant under M′, we
have supp ∣x ∣ ∈M. Let u ∈ U(M′). Then uvu∗ is a partial isometry satisfying

(uvu∗)∗(uvu∗) = uv∗vu∗ = u(supp x)u∗ = supp x ,

since supp x ∈M and u ∈M′. Similarly, we see that (uvu∗)(uvu∗)∗ = im x . Moreover,

uvu∗∣x ∣ = uv ∣x ∣u∗ = uxu∗ = x .

Uniqueness of the polar decomposition shows uvu∗ = v . But this means that v ∈M′′ =M.

extend to polar decomposition for affiliated operators in L2.

Definition 1.5.17. Let M be a von Neumann algebra and p, q ∈ M projections. We say that p
dominates q if there is a partial isometry v ∈M such that vv∗ ≤ p and v∗v = q. In this case we write
p ≻ q. If p ≺ q and p ≻ q, then p and q are called Murry-von Neumann equivalent and we write p ∼ q.

The next lemma addresses the subtlety, that à priori equivalent projections are not comparable by
a single partial isometry. It holds true for all von Neumann algebras (see Dixmier - Les algèbres
d’opérateurs dans l’espace Hilbertien, Proposition 1, p. 216), but we prove it here only for finite von
Neumann algebras in which case the proof becomes very short.

Lemma 1.5.18. Let p, q ∈ M be equivalent projections in a finite von Neumann algebra M. Then
there is a partial isometry v ∈M such that supp v = p and im v = q.

Proof. By definition of equivalence, there are partial isometries v ,w ∈M such that vv∗ ≤ p, v∗v = q
and ww∗ ≤ q, w∗w = p. Let (τi)i be a faithful family of traces on M. We obtain that

τi(p) = τi(w∗w) = τi(ww∗) ≤ τi(q) = τi(v∗v) = τi(vv∗) ≤ τi(p) ,

showing that τi(p) = τi(q) for all i . We obtain τi(p − vv∗) = 0, which by faithfulness of (τi)i implies
p = vv∗. This finishes the proof.

The next proposition says that we can compare each pair of projection in a factor, with respect to the
partial order ≺ from Definition 1.5.17.

Proposition 1.5.19. Let M be a factor. If p, q ∈M are projections, then either p ≺ q or p ≻ q.

18



Von Neumann algebras and measured group theory Sven Raum

Proof. SinceM is a factor, the idealMpM
SOT

equalsM. In particular, there is some non-zero element
x ∈ pMq. Let x = v ∣x ∣ be the polar decomposition and note that vv∗ = im x ≤ p and v∗v = supp x ≤ q
lie in M by Proposition 1.5.15.

Let (vi)i be a maximal family of partial isometries with pairwise orthogonal images im vi ≤ p and
pairwise orthogonal supports supp vi ≤ q. Then v = ∑i vi (in SOT) is a well-defined element of M. If
im v = ∑i im vi ≠ p and supp v = ∑i supp vi ≠ q, then we can apply the first part of the proposition to
p − im v and q − supp v , so as to obtain a contradiction to the maximality of (vi)i . This shows that v
witnesses either p ≺ q or p ≻ q.

Next we are going to study von Neumann algebras containing projections that cannot be “split”.

Definition 1.5.20. Let M be a von Neumann algebra. A projection p ∈ M is called minimal if q ≤ p
implies q ∈ {0, p} for any other projection q ∈M.

Theorem 1.5.21. Let M be a not necessarily separable factor that contains a minimal projection.
Then M ≅ B(H) for some Hilbert space H. In particular, a II1 factor does not contain any minimal
projections.

Proof. Let p ∈ M be a minimal projection and q ∈ M a some non-zero projection. Then p ≺ q or
q ≺ p. But q ≺ p implies p ∼ q, since p is minimal. We conclude that p ≺ q and hence q contains some
minimal projection. This argument shows that (i) every non-zero projection in M contains a minimal
projection, and (ii) all minimal projections in M are equivalent.

Let (pi)i∈I be a maximal family of pairwise orthogonal minimal projections in M. If ∑i∈I pi ≠ 1 (where
the limit is taken in the strong sense), then there is a minimal projection contained in 1−∑i∈I pi , which
contradicts maximality of (pi)i . We conclude that ∑i pi = 1.

Since pi ∼ pj for all i , j ∈ I, there are partial isometries v ij ∈M such that im v ij = pi , supp v ij = pj . Note
that piMpi = Cpi , by minimality of pi . We claim that piMpj = Cv ij . Let x ∈ piMpj be non-zero. Then
x∗x ∈ pjMpj = Cpj and xx∗ ∈ piMpi = Cpi are non-zero elements. So if x = v ∣x ∣ denotes the polar
decomposition if x , then ∣x ∣ ∈ CpjMpj and v is partial isometry with support pj and image pi . We have
v(v ij )∗ ∈ piMpi = Cpi , so that v = vpj = v(v ij )∗v ij ∈ Cv ij . We conclude that x = v ∣x ∣ ∈ Cv ij pj = Cv ij ,
finishing the proof of the claim.

We scaling the partial isometries (v ij )i ,j∈I , we may assume that v ij v
j
k = v ik for all i , j, k ∈ I. Further

x = ∑i ,j∈I pixpj for every x ∈M, allows us to infer that M is generated by the family (v ij )i ,j∈I .
Fix some element 0 ∈ I and write K ∶= H0. A short calculation shows that W ∶ `2(I) ⊗ K → H by
δi ⊗ ξ ↦ v i0ξ defines a unitary. We prove that W ∗MW = B(`2(I)) ⊗ 1. For i , j, j ∈ I and ξ ∈ K we have

W ∗v ijW (δk ⊗ ξ) =W ∗v ij v
k
0 ξ = δj,kW ∗v i0ξ = δj,k(δi ⊗ ξ) .

In particular, W ∗MW contains all rank one operators in B(`2(I)) ⊗ 1, showing that W ∗MW ⊃
B(`2(I)) ⊗ 1. It remains to show that W ∗MW ⊂ (1 ⊗ B(K))′ = B(`2(I)) ⊗ 1. Let i , j, k ∈ I, let
x ∈ B(K) and ξ ∈ K. Then

W ∗v ijW (1⊗ x)(δk ⊗ ξ) =W ∗v ijW (δk ⊗ xξ) = δj,kδi ⊗ xξ .

and
(1⊗ x)W ∗v ijW (δk ⊗ ξ) = δj,k(1⊗ x)δi ⊗ ξ = δj,kδi ⊗ xξ .
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This shows [W ∗v ijW,1 ⊗ x] = 0 for all i , j ∈ I and all x ∈ B(K). Since M is generated by the partial
isometries (v ij )i ,j∈I , this shows M ≅ B(`2(I)).
Now assume that M is a finite factor containing a minimal projection. Denote by τ some faithful
trace on M. Then the family (pi)i∈I is finite, since 1 = τ(1) = ∑i∈I τ(pi) and τ(pi) does not depend
on i . It follows that M ≅ B(`2(I)) ≅ M∣I∣(C) is a matrix algebra and hence finite dimensional.

We finish this section by another important proposition, underlining the importance of projections in
von Neumann algebras.

Proposition 1.5.22. Let M be a von Neumann algebra. Then M is the norm closure of the linear
span of all its projections.

Proof. Splitting elements of M in their real and imaginary parts 1
2
(x +x∗) and 1

2i
(x −x∗), it suffices to

show that every self-adjoint element in M can be approximated in norm by a finite linear combination
of projections.

Let x ∈M be self-adjoint. Then {x}′′ is an abelian von Neumann algebra isomorphic to L∞(σ(x)) by
Proposition 1.4.35. Here x is identified with the identity function on σ(x). Covering σ(x) by intervals
of length ε, we can approximate idσ(x) in the uniform topology up to ε by a finite linear combination
of indicator functions. This finishes the proof.

1.5.4 The unique trace on a II1 factor

In this section we are going to show that finite factors are characterised as those finite von Neumann
algebras which admit exactly one trace. Our first observation is that a finite von Neumann algebra
with a unique trace must be a factor.

Proposition 1.5.23. Let M be a finite von Neumann algebra which admits a unique trace. Then M
is a factor.

Proof. Let τ be the unique trace on M, which must be faithful by the finiteness assumption on M.
Consider a projection p ∈ Z(M) satisfying τ(p) ≠ 0. Then τp(x) = τ(pxp) defines a trace onM, which
must be a positive multiple of τ by uniqueness. Now τp(1−p) = 0 implies τ(1−p) = 0. This shows that
p = 1, since τ is faithful. So Z(M) contains only the projections 0 and 1 and thus Z(M) = C1.

In the rest of this section we are going to prove the converse to Proposition 1.5.23. We start by
quantifying the absence of minimal projections in II1 factors (compare with Theorem 1.5.21).

Lemma 1.5.24. Let M be a II1 factor with trace τ . Then for every ε > 0 there is a non-zero projection
p ∈M such that τ(p) < ε.

Proof. Assume that there is ε > 0 such that every non-zero projection p ∈ M satisfies τ(ε) ≥ ε. We
will show that M contains a minimal projection. Then Theorem 1.5.21 shows that M is a matrix
algebra and hence finite dimensional.

If p ∈ M is an arbitrary projection, then either p is minimal or there is a properly contained non-zero
projection p′ < p. We have τ(p − p′) ≤ τ(p) − ε. We conclude that M either contains a minimal
projection or a non-zero projection p such that τ(p) < 2ε. However the latter condition already
implies that p is minimal, by our assumptions. This finishes the proof.
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Lemma 1.5.25. Let M be a II1 factor. Then there is a sequence of projections (pi)i∈N in M such
that for every i ∈ N there are partial isometries v ji ∈ M, j ∈ {1, . . . ,2i} such that (v ji )

∗v ji = pi and
∑2i

j=1 v
j
i (v

j
i )
∗ = 1.

A sequence of projections as described in the last lemma is called a fundamental sequence of projec-
tions.

Proof. It suffices to show that for every projection p ∈ M there are projections p1, p2 ∈ M such that
p1 ∼ p2 and p = p1 + p2. Considering the von Neumann algebra pMp instead of M, we may assume
that p = 1.

Let τ be a trace on M. Let (qi)i∈I be a maximal family of pairwise orthogonal projections such
that τ(∑i∈I qi) ≤ 1/2. We show that q ∶= ∑i∈I qi satisfies c ∶= τ(q) = 1/2. If this was not the
case, Lemma 1.5.24 applied to (1 − q)M(1 − q) gives us a non-zero projection q′ ≤ 1 − q such that
τ(q′) < 1/2 − c . So we can add q′ to the family (qi)i∈I and contradict its maximality. This finishes
the proof.

Theorem 1.5.26. A finite von Neumann algebra M is a factor if and only if it admits a unique trace.

Proof. If M admits a unique trace, then M is a factor by Proposition 1.5.23. So we have to show
that there is a unique trace on every finite factor M.

IfM is a finite factor, then eitherM ≅ Mn(C) is a matrix algebra orM is a II1 factor by Theorem 1.5.21.
Since matrix algebras have a unique trace, we may assume that M is a II1 factor.

By Lemma 1.5.25, we may take a fundamental sequence (pi)i∈N for M. Every trace τ on M satisfies

1 = τ(1) = ∑
j

τ(v ji (v
j
i )
∗) = ∑

j

τ((v ji )
∗v ji ) = 2iτ(pi) .

Hence τ(pi) = 2−i . It follows that all traces agree on the SOT-closure of E = span{vv∗ ∣ v∗v =
pi for some i}. We show that this set contains all projections of M and hence, by Proposition 1.5.22,
all of M.

Fix a trace τ on M. By Proposition 1.5.3, we know that τ is faithful. Let p ∈M be some projection
and c ∶= τ(p). Let i ∈ N be minimal such that 2−i ≤ c . By Proposition 1.5.19, we have either pi ≺ p
or pi ≻ p. Since the latter implies 2−i = τ(pi) ≥ τ(p) = c ≥ 2−i , we can conclude pi ∼ p in this case.
So we obtain pi ≺ p in any case. Let v ∈ M be a partial isometry satisfying supp v = pi and im v ≤ p.
Then τ(p − vv∗) = c − 2−i < 2−(i+1) by the choice of i . Inductively, we can approximate p in ∥ ⋅ ∥τ,2 by
a bounded sequence of elements from E. Since the ∥ ∥2-topology agrees with the strong topology on
bounded sets by Proposition 1.2.4, we conclude that p lies in the SOT-close of E. This finishes the
proof.
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1.6 Solutions to exercises

Solution (To exercise 1.2.6). Consider the von Neumann algebra L∞([0,1]) ⊂ L∞([0,1], λ). We
give an example of an unbounded sequence of function fn ∈ L∞([0,1]) such that fn → 0 in ∥ ∥2, but
fn /→ 0 in the strong topology (not even weakly).

Let
fn(x) ∶= 1[2−(n+1),2−n]

1

x1/2

and
ξ(x) ∶= 1

x1/4
.

Note that ξ is well defined up to measure 0 in L2([0,1], λ). We have

∥fn∥2 =
2−n

∫
2−(n+1)

1

x1/2
dx = [x1/2]2−n

2−(n+1) = 2−n/2 − 2
−(n+1)

2 → 0 ,

while

⟨fnξ, ξ⟩ =
2−n

∫
2−(n+1)

1

x
dx = [log x]2−n

2−(n+1) = log(2−n) − log(2−(n+1)) = log(2−1) .

So (fn)n is the desired example.

Solution (To exercise 1.4.4). Let Λ ⊴ Γ be a normal inclusion of groups. We show that for every
trace τ on L(Λ) the composition τ ○ E is a trace on L(Γ).
For g, h ∈ Γ, we have E(uguh) = 1Λ(gh)ugh and E(uhug) = 1Λ(hg)uhg. Since Λ ⊴ Γ is normal, we have
gh = h−1(hg)h ∈ Λ if and only if hg ∈ Λ. So if τ denotes any trace on L(Λ), then

τ ○ E(uguh) = 1Λ(gh)τ(ugh) = 1Λ(hg)τ(ugh) = 1Λ(gh)τ(uhg) .

Solution (To exercise 1.4.12). Let Γ be an infinite group and (X0, µ0) a non-trivial standard prob-
ability measure space. Denote by Γ ↷ (X,µ) = (X0, µ0)Γ the Bernoulli shift. We show that this is a
free ergodic pmp action.

We start by showing that Γ ↷ X is probability measure preserving. To this end define for any
sequence of pairwise different elements g1, . . . , gn ∈ Γ and measurable subsets A1, . . . , An ⊂ X0 the set
Bg1,...,gn
A1,...,An

= {x ∈ X ∣ ∀i ∈ {1, . . . , n} ∶ xgi ∈ Ai}. Then µ(B
g1,...,gn
A1,...,An

) = ∏n
i=1 µ0(Ai) by the definition of the

product measure. Further, if g ∈ Γ, then gBg1,...,gn
A1,...,An

= Bgg1,...,ggn
A1,...,An

. So mu(gBg1,...,gn
A1,...,An

) = µ(Bg1,...,gn
A1,...,An

).
Since subsets of the form Bg1,...,gn

A1,...,An
generate the σ-algebra of X, it follows indeed that µ is Γ-invariant.

Let us next show that Γ ↷ X is free. Let g ∈ Γ ∖ {e}. Then gx = x implies that x is constant on
⟨g⟩-orbits. So

Xg = {x ∈ X ∣gx = x} = ∆(XΓ/⟨g⟩
0 ) ,

where ∆ denotes the diagonal embedding ∆(x)h = (x)h⟨g⟩. Assuming that g has infinite order, we can
use the fact that the diagonal embedding X0 ↪ XN

0 has measure 0 to conclude that µ(Xg) = 0. If
ord(g) < ∞, then Γ/⟨g⟩ is infinite. The image of the embedding X0 ↪ Xord(g) has measure m < 1. So
∆(XΓ/⟨g⟩

0 ) has measure ∏h⟨g⟩∈Γ/⟨g⟩m = 0.
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We finally show that Γ ↷ X is ergodic. To this end we consider the following property. The action
Γ ↷ X is mixing if for all A,B ⊂ X measurable we have µ(A ∩ gB) g→∞→ µ(A)µ(B). A mixing action
of an infinite group is ergodic, since a Γ-invariant set A ⊂ X satisfies

µ(A) = µ(A ∩ gA) → µ(A)2

implying that µ(A) ∈ {0,1}. So proving that the Bernoulli shift is mixing, shows that it is ergodic.
Let g1, . . . , gn and h1, . . . , hm be two finite sequences of pairwise different elements from Γ and
let A1, . . . , An and B1, . . . ,Bm be measurable subsets of X0. Let F = {g ∈ Γ ∣ ∃i ∈ {1, . . . , n}∃j ∈
{1,⋯ ,m} ∶ ghj = gj}, which is a finite subset of Γ. If g ∈ Γ ∖ F , then Bg1,...,gn

A1,...,An
∩ gBh1,...,hm

B1,...,Bm
=

Bg1,...,gn,gh1,...,ghm
A1,...,An,B1,...,Bm

. In particular,

µ(Bg1,...,gn
A1,...,An

∩ gBh1,...,hm
B1,...,Bm

) = µ(Bg1,...,gn,gh1,...,ghm
A1,...,An,B1,...,Bm

) = µ(Bg1,...,gn
A1,...,An

)µ(Bh1,...,hm
B1,...,Bm

) .

If now A,B are arbitrary measurable subsets of X, they can be approximated by finite disjoint unions
of sets of the form Bg1,...,gn

A1,...,An
. This way one proves that for every ε > 0 there is a finite set F ⊂ Γ such

that for all g ∈ Γ ∖ F we have
∣µ(A ∩ gB) − µ(A)µ(B)∣ < ε .

This is the exact meaning of µ(A ∩ gB) g→∞→ µ(A)µ(B).

Solution (To exercise 1.4.14). Let Γ ≤ G be a dense subgroup of a compact second countable
group. Denote by µ the normalised Haar measure of G. We show that the action Γ ↷ (G,µ) is free
ergodic and pmp.

Since the Haar measure is left invariant, it is clear that Γ ↷ G is pmp. Further, if g ∈ Γ and x ∈ G
satisfy gx = x , then g = e just by the fact that Γ is a subgroup of G. It remains to show ergodicity of
Γ↷ G. Assume that A ⊂ G is a non-negligible measurable Γ-invariant subset. Consider the probability
measure ν = 1

µ(A)µ∣A on G. Since A is Γ-invariant, also ν is Γ-invariant. By continuity of the action
G ↷ P(G) on the compact set of all probability measures on G, it follows that ν is also G-invariant.
But then uniqueness of the normalised Haar measure (see for example Theorem 1.3.4 in Deitmar,
Echerhoff - Principles of Harmonic Analysis) implies that µ(Ac) = ν(Ac) = 0. So A is co-negligible.

Solution (To exercise 1.5.7). We first show that Fn is icc for all n ≥ 2. Denote by x1, . . . , xn the
free letters. Let g ∈ Fn be non-trivial and let xi , i ∈ {1, . . . , n} be the first letter from the left in the
reduced form of g. Let j ∈ {1, . . . , n}∖{j}. Then the reduced form of x lj gx

−l
j starts with x lj xi , making

these elements pairwise different for l ∈ Z. It follows that the conjugacy class of g is infinite.

Now consider the group S∞ of finitely supported permutations of N and let π ∈ S∞ be non-trivial.
There is n ∈ N such that π(n) ≠ n. We have

((nm)π(nm))(m) = π(n)

for all m ≠ π(n). So the elements (nm)π(nm) are pairwise different and the conjugacy class of π is
infinite.
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2 Jones’ basic construction and Popa’s intertwining technique

Intertwining by bimodules is a techniques introduced by Popa in the mid 2000’s in order to study
unitary conjugacy of inclusions of von Neumann algebras. The aim of this section is to prove the
following equivalence, which gives a practical criterion for conjugation of Cartan subalgebras.

Theorem 2.0.1. Let A,B ⊂M be von Neumann subalgebras of a tracial von Neumann algebra. Then
the following two statements are equivalent.

• There is a projection p ∈ Mn(C) ⊗B, a non-zero *-homomorphism ϕ ∶ A→ p(Mn(C) ⊗B)p and
a non-zero partial isometry v ∈ (M1,n(C) ⊗M)p such that vϕ(a) = av for all a ∈ A.

• There is no sequence of unitaries (un)n in A such that for all a, b ∈M we have ∥EB(aunb)∥2 → 0

If M is a finite factor and A,B ⊂ M are Cartan subalgebras, then either of the previous conditions
implies that there is a unitary u ∈M such that uAu∗ = B.

2.1 Unbounded traces and semi-finite factors

In the sequel we will need to a replacement for traces on von Neumann algebras of the form N⊗B(H)
for a finite von Neumann algebra N and an infinite dimensional Hilbert space H. Such a von Neumann
algebra is not finite and in fact it does not support a single non-zero trace. We have to replace traces
by their unbounded cousins, like in the passage from Mn(C) to B(`2(N)).

Definition 2.1.1. Let M be a von Neumann algebra. An unbounded trace on M is a map Tr ∶M+ →
R≥0 ∪ {∞} such that Tr(x∗x) = Tr(xx∗) for all x ∈M. The trace Tr is called

• semifinite, if the set nTr = {x ∈M+ ∣Tr(x∗x) < ∞} is *-strongly dense in M;

• faithful, if Tr(x∗x) = 0 implies x = 0 for x ∈M;

• normal, Tr(sup xn) = sup Tr(xn) for all non-decreasing bounded sequences (xn)n in M+.

Note that every tracial state defines a unique normal unbounded trace in the sense of the previous
definition.

Definition 2.1.2. A von Neumann algebra M is called semifinite if it admits a faithful family (Tri)i
of normal semifinite traces. A semifinite factor that is not finite or contains a minimal projection is
called a II∞ factor.

The terminology of the previous definition is explained by the next theorem, expressing type II∞
factors in terms of “infinite amplifications” of II1 factors. It can be proved using a similar strategy as
for Theorem 1.5.21.

Theorem 2.1.3. If N is a II1 factor and H and infinite dimensional Hilbert space, then N⊗B(H) is a
type II∞ factor. Vice versa, if M is a type II∞ factor, then M ≅ N⊗B(H) for some II1 factor N and
some infinite dimensional Hilbert space H.

Let us collect some remarks, drawing parallels with theorems we already know for tracial states.
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Remark 2.1.4. If M is a von Neumann algebra with an unbounded trace Tr, then nTr is a two-sided
ideal in M, which is not necessarily SOT-closed. In particular, an unbounded trace on a factor is
automatically semifinite. In analogy with Theorem 1.5.26, one can proof that a type II∞ factor admits
a unique non-zero unbounded trace up to scaling by positive constants.

add GNS-construction for unbounded traces

In Proposition 1.2.4 we described the equivalence of SOT and of ∥ ∥2 convergence on the unit ball
of a tracial von Neumann algebra. The reader might have observed, that not only the topologies, but
also the uniformities underlying the SOT and the ∥ ∥2-topology agree. A similar result holds for von
Neumann algebras admitting a faithful semifinite normal trace. We omit its proof here.

Proposition 2.1.5. Let M be a von Neumann algebra with normal semifinite faithful trace Tr. If (xi)i
is a bounded net in nTr converging to ξ ∈ L2(M,Tr) in ∥ ∥2,Tr, then there is x ∈ nTr such that xi → x

in SOT and x̂ = ξ.

Proof. Denote by ξ ∈ L2(M,Tr) the ∥ ∥2,Tr-limit of the bounded net (xi)i in nTr. Let c ≥ 0 such that
∥xi∥ ≤ c for all i . For y ∈ nTr we have

∥ξy∥ = lim
i

∥x̂iy∥ = lim
i

∥xi ŷ∥ ≤ c∥y∥2,Tr .

So ŷ ↦ ξy extends to a bounded operator Lξ ∶ L2(M,Tr) → L2(M,Tr). Since (xi)i is a bounded net,
the previous calculation shows that xi → Lξ in SOT. In particular, Lξ ∈M.

We show that Lξ ∈ nTr. Note that LξL
∗
ξ = supa∈nTr,∥a∥≤1 Lξaa

∗L∗ξ . We have Lξa ∈ nTr and L̂ξa = Lξâ = ξa
by the definition of Lξ. This shows that

Tr(L∗ξLξ) = Tr(LξL
∗
ξ) = sup

a∈nTr,∥a∥≤1
Tr(Lξaa

∗L∗ξ) = sup
a∈nTr,∥a∥≤1

∥ξa∥2
2,Tr ≤ sup

a∈nTr,∥a∥≤1
∥ξ∥2∥a∥2 ≤ ∥ξ∥ .

So Lξ ∈ nTr. The equation L̂ξa = ξa for all a ∈ nTr implies that L̂ξ = ξ. This finishes the proof of the
proposition.

Here’s an auxiliary result that we use frequently in L2-space of von Neumann algebras. Before we show
its proof, recall the parallelogram identity

1

2
(∥ξ + η∥2 + ∥ξ − η∥2) = ∥ξ∥2 + ∥η∥2 ,

which holds in C2 and hence in every Hilbert space.

Proposition 2.1.6. Let H be a Hilbert space and C ⊂ H a closed convex set. Then there is a unique
element of minimal norm in C.

Proof. Let ` = infξ∈C ∥ξ∥ and take a sequence (ξn)n in H such that ∥xn∥ → ` as n →∞. The fact that
C is convex together with the parallelogram identity implies that

`2 ≤ ∥1

2
(ξn + ξm)∥2 = 1

2
(∥ξn∥2 + ∥ξm∥2) − 1

4
∥ξn − ξm∥2 .

As 1
2
(∥ξn∥2 + ∥ξm∥2) converges to `2 when n,m →∞, we conclude that (ξn)n is a Cauchy sequence.

Denote by ξ ∈ C the limit of (ξn)n, which satisfies ∥ξ∥ = `.
If ξ, η ∈ C satisfy ∥ξ∥ = ∥η∥ = `, then

`2 ≤ ∥1

2
(ξn + ξm)∥2 = `2 − 1

4
∥ξ − η∥2 ≤ `2

shows that ξ = η. This finishes the proof of the proposition.
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2.2 The J-operator

Proposition 2.2.1. Let M be a von Neumann algebra with normal semifinite faithful trace Tr. The
map nTr ∋ x ↦ x∗ extends to a conjugate linear isometric involution J of L2(M,Tr).

Proof. From the tracial property Tr(x∗x) = Tr(xx∗), it follows that J is ∥ ∥2,Tr-preserving. So it
extends form the dense subset nTr ⊂ L2(M,Tr) to a well-defined conjugate linear map J ∶ L2(M,Tr) →
L2(M,Tr). Since (x∗)∗ = x for all x ∈ M, we have J2 = id, so J is an isometric involution of
L2(M,Tr).

Theorem 2.2.2. Let M be a von Neumann algebra with normal semifinite faithful trace Tr. The J
operator satisfies JMJ =M′ ⊂ B(L2(M,Tr)). Further, xop ↦ Jx∗J defines an isomorphism Mop ≅M′.

2.3 Modules over von Neumann algebras

Definition 2.3.1. Let M be a von Neumann algebra. A left M-module is a Hilbert space H with a
normal *-homomorphism M → B(H). We write MH to indicate that H is a left M-module. A right
M-module is a Hilbert space H with a normal *-antihomomorphism M → B(H), that is a normal
C-linear antimultiplicative map which respects the *-structure. We write HM for a right M-module.

Example 2.3.2. If M is a von Neumann algebra with faithful semifinite normal trace, then L2(M,Tr)
is a left M-module and a right M-module. Further, `2(N) ⊗ L2(M) is a both a left and a right M-
module and if p ∈ B(`2(N))⊗M is a projection, then also M(`2(N) ⊗ L2(M))p is a left M-module and
p(`2(N) ⊗ L2(M))M is a right M-module.

Theorem 2.3.3. Let M be a tracial von Neumann algebra. If MH is a countably generated left
M-module, then there is a projection p ∈ B(`2(N))⊗M such that MH ≅ (`2(N) ⊗ L2(M))p. If HM
is a countably generated right M-module, then there is a projection p ∈ B(`2(N))⊗M such that
HM ≅ p(`2(N) ⊗ L2(M))

M
.

In order to prove this theorem, we will make use of the existence of bounded vectors in any M-
module, that is denoting by MH a left M-module, then there is a dense subspace 0H ≤ H such that
Rξ ∶M →H ∶∋ x ↦ xξ extends to a bounded map L2(M) → H. (Here Rξ stands for “right multiplication
with ξ”). A proof of this fact lies unfortunately beyond the scope of this course.

Proof of Theorem 2.3.3. Let us first reduce to the case of left M-modules. If HM is a right module,
then xξ = ξx∗ defines a left M-module structure on the conjugate Hilbert space H. In a similar way we
can pass from left to right M-modules, establishing a bijection between the set of countably generated
left M-modules and countably generated right M-modules. In particular, the ML2(M) ≅ L2(M)M and
more generally M(`2(N) ⊗ L2(M))p ≅ p(`2(N) ⊗ L2(M))M.
Let MH be a countably generated left M-module. Let (Vn)n be a maximal family of non-zero M-linear
partial isometries Vn ∶ L2(M) → H with pairwise orthogonal images VnL2(M) = Kn. If ⊕nKn ≠ H, then
we can take a bounded vector ξ in its orthogonal complement K, which is an M-submodule of H.
Denote by V the partial isometry in the polar decomposition of the bounded operator Rξ ∶ L2(M) → K.
Then V L2(M) ≤ K is orthogonal to all (Kn)n and V is M-linear, since Rξ is M-linear. This contradicts
maximality of the family (Vn)n hand hence shows that H = ⊕Kn. Since H is countably generated, the
family of its pairwise orthogonal non-zero subspaces (Kn)n is countable. If there it is a finite family, we
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may simply drop the non-zero assumption on all (Vn)n and complete it to a countably infinite family.
We identify this family’s index set with N. Define a mapW = ⊕n∈N Vn ∶ `2(N)⊗L2(M) → H, which is an
M-linear coisometry. Since W is M-linear, its support projection lies in (1⊗M)′∩(B(`2(N))⊗L2(M)).
Using the fact that M′ ∩B(L2(M)) is antiisomorphic with M, we obtain a projection p ∈ B(`2(N))⊗M
and an M-linear unitary between (`2(N)⊗ L2(M))p →H. This finishes the proof of the theorem.

2.4 Jones’ basic construction

One important technical tool in von Neumann algebras is Jones’ basic construction, which implements
a conditional expectation E ∶ M → B as conjugation by a projection eB ∈ L2(M) satisfying eBxeb =
E(x)eB. As for the group-measure space constructions, we proceed in an axiomatic way.

Definition 2.4.1. Let B ⊂ M be an inclusion of tracial von Neumann algebras and E ∶ M → B the
trace preserving conditional expectation. Then the basic construction of B ⊂ M is a von Neumann
algebra ⟨M,eB⟩ such that

• M ⊂ ⟨M,eB⟩

• there is a projection eB ∈ ⟨M,eB⟩,

• ⟨M,eB⟩ is generated by M and eB,

• eBxeB = E(x)eB for all x ∈M, and

• there is a faithful normal (unbounded) trace Tr on ⟨M,eB⟩ satisfying Tr(xeBx∗) = τ(x∗x) for
all x ∈M.

Theorem 2.4.2. The basic construction exists and it is unique up to isomorphism preserving M and
eB and the unbounded trace.

Proof. Consider M ⊂ B(L2(M)) and let eB ∶ L2(M) → L2(B) be the orthogonal projection. We show
that M ∶= (M ∪ {eB})′′ is the basic construction. By definition M ⊂ M and eB ∈ M. Further M
is generated by M and eB. For x ∈ M, the element eB ŷ ∈ L2(B) is uniquely determined by its scalar
products with ŷ , for y ∈ L2(B). We obtain for x ∈M, y ∈ B

⟨eB x̂ , ŷ⟩ = ⟨x̂ , ŷ⟩ = τ(y∗x) = τ(EB(y∗x)) = τ(y∗,EB(x)) = ⟨ÊB(x), ŷ⟩

This shows that eB x̂ = ÊB(x) for all x ∈M.

If x, y ∈M, then

eBxeB ŷ = eBx ÊB(y) = (EB(xEB(y)))
∧ = (EB(x)EB(y))

∧ = EB(x)eB ŷ

So eBxeB = EB(x) for all x ∈M.

It remains to show that there is a faithful normal trace Tr on M satisfying Tr(xeBx∗) = τ(x∗x) for
all x ∈M. To this end not thatM′ = JMJ ∩{eB}′ = JBJ. By Theorem 2.3.3, we find an isomorphism
U ∶ L2(M)B → p(`2(N) ⊗ L2(B))

B
. We may assume that U(1̂) = δ1 ⊗ 1̂ ∈ `2(N) ⊗ L2(B) and hence

p ≥ e1 ⊗ 1. Note that U ∗ eBU∗ = e1 ⊗ 1. The faithful normal trace Tr`2(N) ⊗ τB on B(`2(N)) ⊗B =
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B(`2(N)⊗L2(B))∩JBJ′ restricts to p(B(`2(N))⊗B)p = UMU∗. Define Tr = (Tr`2(N)⊗τB)○(AdU).
Then

Tr(xeBx∗) = Tr(eBx∗xeB)
= Tr(EB(x∗x)eB)
= (Tr`2(N) ⊗ τB)(e1 ⊗ EB(x∗x))
= τB(EB(x∗x))
= τ(x∗x) .

This proves existence of the basic construction.

We only sketch a proof of the uniqueness statement in the Theorem. Let ⟨M,eB⟩ be a basic con-
struction for B ⊂ M. On the subset nTr ⊃ MeM, we can define a non-degenerate inner product
by

⟨x, y⟩ ∶= Tr(y∗x)

On the subset MeBM ⊂ nTr, which is dense with respect to the induced Hilbert norm, we have

⟨xeBy , zeBa⟩Tr((zeBa)∗(xeBy)) = τ(ya∗EB(z∗x)) ,

for x, y , z, a ∈ M. This only depends on the properties of Tr and not on the particular realisation
of ⟨M,eB⟩. Denoting the Hilbert space completion of nTr with respect to this inner product by
L2(⟨M,eB⟩,Tr), we can represent ⟨M,eB⟩. On the dense *-subalgebra MeBM, this representation
does not depend on concrete realisation of ⟨M,eB⟩, which suffices to prove its uniqueness. Since the
Tr is characterised by a relation between (M,τ) and eB, we see that it is also unique.

2.5 Bimodules

Definition 2.5.1. Let M, N be von Neumann algebras. An M-N-bimodule is a Hilbert space H with
a normal *-representation λ ∶ M → B(H) and a normal *-antirepresentation ρ ∶ N → B(H) such that
[λ(x), ρ(y)] = 0 for all x ∈M, y ∈ N.

Example 2.5.2. • Let M be a tracial von Neumann algebra. Then L2(M) is an M-M-bimodule
equipped with the actions xŷz = x̂yz for all x, y , z ∈M. We use the fact that, if τ denotes the
trace of M, then

∥yz∥2
2 = τ((yz)∗yz) = τ(z∗y∗yz) = τ(yzz∗y∗) ≤ ∥zz∗∥τ(yy∗) = ∥z∥2∥y∥2

2

• More generally, if A,B ⊂M, then L2(M) is an A-B-bimodule, after restricting the left and right
action of M.

• If Γ is a discrete group and π ∶ Γ → U(Hπ) is a unitary representation of Γ, then Hπ ⊗ `2(Γ) is
an L(Γ)-L(Γ)-bimodule with left and right action induced by π ⊗λ and 1⊗ ρ. It is necessary to
invoke Fell’s absorption property to see this.

Proposition 2.5.3. Let M be a tracial von Neumann algebra and A,B ⊂ M. Then p ↦ pL2(M)
establishes a one-to-one correspondence between projections in ⟨M,eB⟩ ∩ A′ and A-B-subbimodules
of L2(M).
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Proof. There is a one-to-one correspondence between closed subspaces of L2(M) and projections in
B(L2(M)) given by p ↦ pL2(M). If p ∈ ⟨M,eB⟩∩A′ = (JBJ′∩B(L2))∩A′, then p is an A-B-linear map,
and hence pL2(M) is an A-B-subbimodule of L2(M). Vice verse, if pL2(M) is an A-B-subbimodule of
L2(M) for some projection p ∈ B(L2(M)), then for all ξ ∈ L2(M) and all a ∈ A, b ∈ B, we have

apξ = papξ
JbJpξ = pJbJpξ .

This shows that ap = pap and JbJp = pJbJp for all a ∈ A, b ∈ B. So p ∈ B(L2(M)) ∩ A′ ∩ JBJ′ =
⟨M,eB⟩ ∩A′.

The next proposition shows that we have a good notion of dimension for bimodules of tracial von
Neumann algebras. This will be fixed in Definiton 2.5.5.

Proposition 2.5.4. Let M be a tracial von Neumann algebra and McH a countably generated left
M-module. Picking an M-module isomorphism H ≅ (`2(N) ⊗ L2(M))p with p ∈ B(`2(N))⊗M as in
Proposition 2.3.3, the number (Tr ⊗ τ)(p) does only depend on McH.

Similarly, if HM is a countably generated right M-module, then the number (Tr ⊗ τ)(p) for an M-
module isomorphism H ≅ p(`2(N) ⊗ L2(M)) does only depend on H.

Proof. It suffices to prove the statement for left M-modules only. Let U ∶ (`2(N) ⊗ L2(M))p →
(`2(N)⊗L2(M))q be a isomorphism between the two left M-modules defined by p, q ∈ B(L2(N))⊗M.
Then U is a partial isometry in B(`2(N) ⊗ L2(B)) ∩B′ = B(`2(N))⊗JBJ with support projection JpJ
and image projection JqJ. In particular, we get

(Tr ⊗ τ)(p) = (Tr ⊗ τ)(JU∗UJ) = (Tr ⊗ τ)(JUU∗J) = (Tr ⊗ τ)(q) .

This finishes the proof of the proposition.

Definition 2.5.5. LetM be a tracial von Neumann algebra and let MH be a countably generated leftM-
module. The number (Tr⊗ τ)(p) for an M-module isomorphism H ≅ (`2(N))p with p ∈ B(`2(N))⊗M
is called the (left) dimension of MH. It is denoted by dimM−H.
If HM is a countably generated right M-module and H ≅ p((`2(N)) ⊗ L2(M)) with p ∈ B(`2(N))⊗M,
then (Tr ⊗ τ)(p) is called the (right) dimension of HM and we denote it by dim−MH.
If bothM,N are tracial von Neumann algebras andH is anM-N-bimodule, then (dimM−H⋅dim−NH)1/2

is called the index of H.

Remark 2.5.6. A finite dimensional module does not need to be finitely generated. However, for
modules over factors this is true.

Let for example f be a measurable integer valued integrable and unbounded function on [0,1]. Choose
projections pn of rank n in B(`2(N)). Let p ∈ L∞([0,1])⊗B(`2(N)) be defined by p(t) = pn if f (t) = n.
Then (L2([0,1]) ⊗ `2(N))p is a finite dimensional L∞([0,1])-module, but it is not finitely generated.

Proposition 2.5.7. Let M,N be von Neumann algebras and assume that M is tracial. If MHN is a
non-zero M-N-bimodule of finite left dimension, then H contains a non-zero M-N-subbimodule that
is finitely generated as a left module. Similarly, every non-zero N-M-bimodule of finite right dimension
contains a non-zero N-M-subbimodule that is finitely generated as a right M-module.
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Proof in the case M is a factor. It suffices to consider the case of anM-N-bimodule MHN of finite left
dimension. We assume that M is a factor and prove that H is finitely generated as a left M-module.

Assume that M is a factor and write H ≅ (`2(N) ⊗ L2(M))p for some non-zero projection p ∈
B(`2(N))⊗M that satisfies (Tr ⊗ τ)(p) < ∞. Since M is a factor, also B(`2(N))⊗M is a factor.
Take n ≥ (Tr⊗τ)(p). The projection pN ∶ `2(N) → `2({0, . . . , n−1}). We have p ≺ pn⊗1 or p ≻ pn⊗1

by Proposition 1.5.19. Since (Tr ⊗ τ)(pn ⊗ 1) = n ≥ (Tr ⊗ τ)(p), we conclude that p ≺ pn ⊗ 1. So H
is isomorphic with a M-subbimodule of Cn ⊗L2(M). Clearly, M(Cn ⊗ L2(M)) is finitely generated as a
left M-module. Further, if K ≤ Cn ⊗ L2(M) is any M-submodule, then there is an M-linear projection
of from Cn ⊗L2(M) onto K. The image of a finite generating set of Cn ⊗L2(M) under this projection
is a finite generating set for K. This finishes the proof in case M is a factor.

Remark 2.5.8. The proof of the general case uses the centre valued trace EZ ∶ M → Z(M),
which is by definition the trace preserving conditional expectation onto the centre. Write MHN ≅
(`2(N) ⊗ L2(M))p for some finite trace projection p ∈ B(`2(N))⊗M and a unital *-homomorphism
N → p(B(`2(N))⊗M)q. Writing Z(M) ≅ L∞(X) and applying Tr⊗EZ to the finite trace projection p,
we obtain an integrable element over X. We can cut this element by a suitable projection in L∞(X) to
obtain a non-zero bounded function. Cutting p by the same projection in L∞(X), one can prove that
the resulting associated left M-module is finitely generated and it remains an M-N-bimodule in fact.
However, we did not develop the necessary extension of comparison of projections from Proposition
1.5.19 in order to actually prove this.

We finish this section by linking the notion of dimension to Jones’ basic construction.

Proposition 2.5.9. Let M be a tracial von Neumann algebra and B ⊂M a von Neumann subalgebra.
Let p ∈ ⟨M,eB⟩ be a projection. Then the dimension of the right B-module pL2(M) equals Tr(p).

Proof. First note that pL2(M) is indeed a right B-module by Proposition 2.5.3 (disguised as a C-B-
bimodule). Let U ∶ L2(M) → q(`2(N) ⊗ L2(B)) be a B-module isomorphism, which satisfies as in the
proof of the existence of ⟨M,eB⟩ in Theorem 2.4.2 the property Tr = (Tr`2(N) ⊗ τ) ○ (AdU). Then

Tr(p) = (Tr`2(N) ⊗ τ)(UpU∗) = dim−B UpU
∗q(`2(N) ⊗ L2(B)) = dim−B pL2(M) .

2.6 Proof of Popa’s intertwining theorem

Theorem 2.6.1. Let A,B ⊂M be von Neumann subalgebras of a tracial von Neumann algebra. Then
the following two statements are equivalent.

(i) There is no sequence of unitaries (un)n in A such that for all a, b ∈M we have ∥EB(aunb)∥2 → 0

(ii) There is a non-zero element x ∈ (⟨M,eB⟩ ∩A′)+ which has finite trace.

(iii) There is an A-B-subbimodule AHB ⊂ L2(M) which has finite right dimension.

(iv) There is a projection p ∈ Mn(C) ⊗B, a non-zero *-homomorphism ϕ ∶ A→ p(Mn(C) ⊗B)p and
a non-zero partial isometry v ∈ (M1,n(C) ⊗M)p such that vϕ(a) = av for all a ∈ A.
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If either of the conditions of this theorem is satisfies, we say that a corner of A embeds into a corner
of B inside M and we write A ≺M B.

Proof. We prove (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i).

Assume that (i) holds. Then there is some ε > 0 and some finite subset F ⊂ M such that for all
u ∈ U(A) we have

∥ ∑
x,y∈F

EB(xuy∗)∥2
≥ ε .

Consider in L2(⟨M,eB⟩,Tr) the set

C = conv∥ ∥2,Tr{ ∑
x,y∈F

ux∗eByu
∗ ∣u ∈ U(A)} .

Since ∥ ∥2,Tr is finite and bounded on conv{∑x,y∈F ux∗eByu∗ ∣u ∈ U(A)} , we see that C is a ∥ ∥2,Tr-
closed subset of L2(⟨M,eB⟩,Tr). So Proposition 2.1.6 says that there is a unique element m ∈ C of
minimal ∥ ∥2,Tr. In particular, Tr(m∗m) < ∞. We have

Tr(( ∑
x,y∈F

ux∗eByu
∗)( ∑

z,a∈F
z∗eBa)) = Tr( ∑

x,y ,z,a∈F
eBaux

∗eBEB(yu∗z∗))

= Tr(EB( ∑
x,y∈F

xuy∗)eBEB( ∑
x,y∈F

xu∗y∗))

= ∥EB( ∑
x,y∈F

xuy∗)∥2
2

≥ ε ,

which shows that also
Tr(m( ∑

x,y∈F
x∗eBy)) ≥ ε .

So m ≠ 0. Further, uCu∗ = C for all u ∈ U(A) implies that m ∈ ⟨M,eB⟩∩A′. So m∗m ∈ (⟨M,eB⟩∩A′)
+

is a non-zero element of finite trace. This proves (ii).

Now assume that (ii) holds. Let x ∈ (⟨M,eB⟩ ∩ A′)
+
be a non-zero element with finite trace. Take

ε > 0 such that 0 ≠ p = 1[ε,∞)(x). Then p(⟨M,eB⟩ ∩A′)
+
and p ≤ 1

ε
x implying that it has finite trace.

According to Proposition 2.5.9, the A-B-bimodule pL2(M) has right dimension dim−B(pL2(M)) =
Tr(p) < ∞. This proves (iii).

Let us now assume (iii) and let K ≤ AL2(M)B be an A-B-bimodule of finite right dimension. By
Proposition 2.5.7, we may assume that K is finitely generated as a right B-module. We obtain a normal
unital *-homomorphism ϕ ∶ A → p(Mn(C) ⊗B)p and an isomorphism V ∶ ϕ(A)p(Cn ⊗ L2(B))B → K of
A-B-bimodules. Consider the vectors ξi ∶= V (p(δi ⊗ 1̂)) ∈ L2(M). They satisfy for a ∈ A

aξi = aV (p(δi ⊗ 1̂))
= V ϕ(a)(δi ⊗ 1̂)
= ∑

j

V p(δj ⊗ ϕ̂(a)j i)

= ∑
j

ξjϕ(a)j i .
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If we set ξ = ∑i e1i ⊗ ξi ∈ M1,n ⊗ L2(M), then this implies

ξϕ(a) = (e1i ⊗ ξi)ϕ(a) = ∑
i ,j

e1j ⊗ ξiϕ(a)i j = ∑
j

e1j ⊗ aξj = aξ ,

for all a ∈ A.
Using a generalisation of the polar decomposition from Proposition 1.5.16, we obtain a decomposition
ξ = v ∣ξ∣ for the vector ξ ∈ M1,n(C)⊗L2(M) ⊂ L2(Mn(C)⊗M), where ∣ξ∣ ∈M+∥ ∥2 and v ∈ M1,n(C)⊗M
is a partial isometry. Using a uniqueness argument for the polar decomposition, we obtain av = vϕ(a)
for all a ∈ A. In particular, v = vp ∈ (M1,n(C) ⊗M)p. This proves (iv).
Assume (iv) and ϕ ∶ A → p(Mn(C) ⊗ B)p be a non-zero *-homomorphism and v ∈ M1,n(M)p be a
non-zero partial isometry satisfying vϕ(a) = av for all a ∈ A. If (un)n is a sequence of unitaries in A,
then considering matrices over M, we have

EB(v∗unv) = EB(v∗vϕ(un)) = EB(v∗v)ϕ(un) ,

showing that matrix elements of EB(v∗unv) do not go to 0 in ∥ ∥2. This shows (i).

Lemma 2.6.2. Let A ⊂M be a Cartan subalgebra in a finite factor. If p, q ∈ A are non-zero projections,
then there is a unitary u ∈ NM(A) such that upu∗q ≠ 0.

Proof. Denote by z = ⋁u∈NM(A) upu
∗ the smallest projection in A containing all NM(A) conjugates of

p. Then z is NM(A)-invariant and hence central in the factor M. It follows that z = 1. In particular
zq ≠ 0, implying that there is u ∈ NM(A) such that upu∗q ≠ 0.

Theorem 2.6.3. If M is a finite factor and A,B ⊂ M are Cartan subalgebras, then A ≺M B implies
that there is a unitary u ∈M such that uAu∗ = B.

Proof. It remains to show that if A,B ⊂ M are Cartan subalgebras of a finite factor, then A ≺ B
implies that there is a unitary u ∈M satisfying uAu∗ = B.
We first prove that there is a non-zero partial isometry v ∈ M such that (a) v∗v ∈ A, (b) vv∗ ∈ B,
and (c) v∗Av ⊂ B. Let p ∈ Mn(C) ⊗B be a projection, ϕ ∶ A → p(Mn(C) ⊗B)p a *-homomorphism
and v ∈ (M1,n(C) ⊗M)p a partial isometry satisfying vϕ(a) = av for all a ∈ A. We may assume that
ϕ is unital. Since ϕ(A) ⊂ Mn(C) ⊗B is an abelian subalgebra, it can be conjugated into Cn ⊗B. In
particular, p ∈ Cn ⊗ B and we can cut down by a rank one projection in Cn in order to assume that
n = 1.

Put e ∶= vv∗. Now avv∗ = vϕ(a)v∗ = vv∗a, shows that e ∈ A′ ∩ M = A. Let f ∶= v∗v . Then
f ∈ ϕ(A)′ ∩ pMp. Further f (ϕ(A)′ ∩ pMp)f = v∗(A′ ∩ eMe)v = v∗Av is abelian, which uses the fact
that e ∈ A. We use a slight extension of Theorem 1.5.21: the projection f is abelian in ϕ(A)′ ∩ pMp,
generalising the notion of minimal projections to not necessarily factorial von Neumann algebras. An
extension of considerations made in the proof of Theorem 1.5.21 shows that there is a projection
f ′ ∈ pB such that f ∼ f ′, that is, there is a partial isometry w ∈ ϕ(A)′ ∩ pMp such that ww = f
and w∗w = f ′. Now vw is a non-zero partial isometry in M such that supp vw = w∗v∗vw = w∗f w =
f ′ ∈ Bp and im vw = im v ∈ A. Further (vw)ϕ(a) = vϕ(a)w = a(vw) for all a ∈ A. This implies
(vw)∗A(vw) = f ′ϕ(A) ⊂ B.
Let (vi) be maximal family of partial isometries in M such that v∗i vi ∈ A are pairwise orthogonal,
viv

∗
i ∈ B are pairwise orthogonal and viAv∗i ⊂ B for all i . If ∑i v∗i vi ≠ 1, then also ∑i viv∗i ≠ 1, since M
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is finite. Write r = 1−∑i v∗i vi and s = 1−∑i viv∗i . By Lemma 2.6.2, there are unitaries u ∈ NM(A) and
w ∈ NM(B) such that uru∗ supp v ≠ 0 and w∗sw(vuru∗v∗) ≠ 0. Then swvur is a non-zero partial
isometry whose support projection lies in A and is contained in r and whose image projection lies in
B and is contained in s. This contradicts maximality of the family (vi)i . So u ∶= ∑i vi is a unitary in
M satisfying uAu∗ ⊂ B. Since uAu∗ is maximal abelian in M and B is abelian, we have uAu∗ = B in
fact. This finishes the proof of the theorem.
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3 A rigidity result

In this section we are going to give examples of actions Γ ↷ (X,µ) which to a certain extend can up
to orbit equivalence be recovered from their group-measure space von Neumann algebras. This will
give rise to examples of non-isomorphic group-measure space constructions.

3.1 Completely positive maps

Definition 3.1.1. Let M,N be von Neumann algebras. A linear map ϕ ∶ M → N is called completely
positive (abbreviated “cp map”), if all amplifications ϕ ⊗ id ∶ M ⊗ Mn(C) → N ⊗ Mn(C) are positive
maps. If ϕ(1) = 1, then ϕ is called a unital completely positive map (abbreviated “ucp map”).

Example 3.1.2. • Every *-homomorphism between von Neumann algebras is completely positive.

• Every positive functional on a von Neumann algebra is a completely positive map.

• If M ⊂ B(H) and T ∈ B(H), then M ∋ x ↦ TxT ∗ is a completely positive map.

The next two propositions show that the previous examples suffice to describe all normal trace pre-
serving ucp maps between von Neumann algebras.

Proposition 3.1.3. Let M,N be tracial von Neumann algebras and let ϕ ∶ M → N be a normal trace
preserving ucp map. Then

⟨x ⊗ ξ, y ⊗ η⟩ ∶= ⟨ϕ(y∗x)ξ, η⟩

defines an inner product on M ⊗alg L2(N). The completion of M ⊗alg L2(N) with respect to this inner
product is an M-N-bimodule with generating vector ξϕ = 1⊗ 1̂. This vector has the property that

⟨xξϕy , ξϕ⟩ = τ(ϕ(x)y)

for all x ∈M and y ∈ N. In particular,

⟨xξϕ, ξϕ⟩ = τ(x) , ⟨ξϕy , ξϕ⟩ = τ(y) .

Proof. We first show that ⟨x ⊗ξ, y ⊗η⟩ = ⟨ϕ(y∗x)ξ, η⟩ defines an inner product on M⊗alg L2(N). It is
clear that it is sesquilinear, so we only have to show positive definiteness. Let ∑ni=1 x⊗ξi ∈M⊗algL2(N)
be a vector, written in such a way that ξ1, . . . , ξn are pairwise orthogonal. Consider the amplification
ϕn ∶M ⊗Mn(C) →M ⊗Mn(C), which is positive by assumption. So the element

ϕn((x∗i xj)i ,j) = ϕn(
⎛
⎜
⎝

0 ⋯ x∗1
⋮

0 ⋯ x∗n

⎞
⎟
⎠

⎛
⎜
⎝

0 ⋯ 0

⋯
x1 ⋯ xn

⎞
⎟
⎠
= ϕn(

⎛
⎜
⎝

0 ⋯ 0

⋯
x1 ⋯ xn

⎞
⎟
⎠

∗
⎛
⎜
⎝

0 ⋯ 0

⋯
x1 ⋯ xn

⎞
⎟
⎠

is positive. We obtain that

⟨∑
i

xi ⊗ ξi ,∑
i

xi ⊗ ξi⟩ = ∑
i ,j

⟨ϕ(x∗i xj)ξj , ξi⟩ = ⟨ϕn((x∗i xj)i ,j)∑
i

ξi ⊗ δi ,∑
i

ξi ⊗ δi⟩ ≥ 0 ,

where δ1, . . . , δn denotes the standard basis of Cn. This proves positive definiteness. Denote the
completion of M ⊗alg L2(N) with respect to this inner product by Hϕ.
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For m ∈M, n ∈ N we have

∥mx ⊗ ξn∥2 = ⟨ϕ(x∗m∗mx)ξn, ξn⟩
≤ ∥m∗m∥⟨ϕ(x∗x)ξn, ξn⟩
= ∥m∥2⟨ϕ(x∗x)1/2ξn,ϕ(x∗x)1/2ξn⟩
≤ ∥m∥2∥n∥2⟨ϕ(x∗x)1/2ξ,ϕ(x∗x)1/2ξ⟩
= ∥m∥2∥n∥2∥x ⊗ ξ∥2 .

So the natural representations of M and N on H are bounded. Further, putting ξϕ ∶= 1⊗ 1̂ ∈ Hϕ, we
have

⟨xξϕy , ξϕ⟩ = ⟨ϕ(x)ŷ , 1̂⟩ = τ(ϕ(x)y) .
In particular,

⟨xξϕ, ξϕ⟩ = τ(ϕ(x)) = τ(x) , ⟨ξϕy , ξϕ⟩ = τ(ϕ(1)y) = τ(y) ,
since ϕ is trace preserving and unital. This also proves that the representations of M and N on Hϕ
are normal.

Proposition 3.1.4. Let M,N be tracial von Neumann algebras and H an M-N-bimodule with a vector
ξ ∈ H such that for all x ∈M, y ∈ N we have

⟨xξ, ξ⟩ = τ(x) , ⟨ξy , ξ⟩ = τ(y) .

Then ξ is a bounded vector for N and considering M ⊂ B(H), the map x ↦ L∗ξxLξ defines a normal
trace preserving ucp map ϕξ ∶M → N.

Proof. For y ∈ N we have
∥ξy∥2 = ⟨ξyy∗, ξ⟩ = τ(yy∗) = ∥y∥2

2 ,

showing that ξ is bounded for N and Lξ is isometric. For x ∈M, y , n1, n2 ∈ N we have

⟨JyJL∗ξxLξn̂1, n̂2⟩ = ⟨L∗ξxLξn̂1, n̂2y∗⟩
= ⟨xLξn̂1,Lξn̂2y∗⟩
= ⟨xξn1, ξn2y

∗⟩
= ⟨xξn1y , ξn2⟩
= ⟨L∗ξxLξJyJn̂1, n̂2⟩ .

This shows that (Ad L∗ξ)(M) ⊂ JNJ′ ∩ B(L2(N)) = N. So considering M ⊂ B(H) we can define ϕξ =
(Ad L∗ξ) ∶M → N. It is clear that ϕξ is a normal completely positive map. Further, ϕξ(1) = L∗ξLξ = 1,
since Lξ is isometric. So ϕξ is unital. Finally, for all x ∈M, we have

τ(L∗ξxLξ) = ⟨L∗ξxLξ1̂, 1̂⟩ = ⟨xξ, ξ⟩ = τ(x) ,

showing that ϕξ is trace preserving. This finishes the proof of the proposition.

Definition 3.1.5. LetM,N be tracial von Neumann algebras. If ϕ ∶M → N is a normal trace preserving
ucp map, then we denote by ξϕ ∈ Hϕ the M-N-bimodule with distinguished vector associated with ϕ
by Proposition 3.1.3.

If H is an M-N-bimodule with a generating tracial vector ξ ∈ H, then ϕξ denotes the normal trace
preserving ucp map ϕξ ∶M → N associated with ξ ∈ H by Proposition 3.1.4.
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Summarising Propositions 3.1.3 and 3.1.4, we obtain the following correspondence between ucp maps
and bimodules.

Theorem 3.1.6. Let M,N be tracial von Neumann algebras. The assignment ϕ ↦ (Hϕ, ξϕ) with
inverse (H, ξ) ↦ ϕξ is a one-to-one correspondence between

(i) normal trace preserving ucp maps ϕ ∶M → N, and

(ii) M-N-bimodules H with a fixed generating tracial vector ξ ∈ H.

Proof. We have to show that (i) ϕξϕ = ϕ and (ii) (Hϕξ , ξϕξ) = (H, ξ). Let x ∈M and y ∈ N. Then

τ(ϕξϕ(x)y) = τ(L∗ξϕxLξϕy)
= ⟨L∗ξϕxLξϕy 1̂, 1̂⟩
= ⟨xξϕy , ξϕ⟩
= τ(ϕ(x)y) ,

using Proposition 3.1.3 for the last equality. This shows (i).

Calculating in Hϕξ , we obtain for x ∈M and y ∈ N that

∥x ⊗ ŷ∥2 = ⟨x ⊗ ŷ , x ⊗ ŷ⟩
= ⟨ϕξ(x∗x)ŷ , ŷ⟩
= ⟨L∗ξx

∗xLξŷ , ŷ⟩
= ⟨xξy , xξy⟩
= ∥xξy∥2 .

So M ⊗L2(N) ∋ x ⊗ ŷ ↦ xξy ∈ H extends to a unitary between Hϕξ and H. It is clear that this unitary
intertwines the M and the N action and that it maps 1⊗ 1̂ to ξ. This proves (ii).

3.2 Positive type functions

Definition 3.2.1. Let X be a set and ϕ ∶ X ×X → C a kernel on X. We say that ϕ is of positive type,
if for all λ1, . . . , λn ∈ C and all x1, . . . , xn ∈ X we have

n

∑
i ,j=1

λiλjϕ(xi , xj) ≥ 0

Let Γ be a discrete group. A function ϕ ∶ Γ → C is called of positive type, if (g, h) ↦ ϕ(h−1g) is a
kernel of positive type on Γ. More explicitly, ϕ is a function of positive type if for all λ1, . . . , λn ∈ C
and all g1, . . . , gn ∈ Γ we have

n

∑
i ,j=1

λiλjϕ(g−1
j gi) ≥ 0 .

We call ϕ normalised if ϕ(e) = 1.

The next theorem gives an analogue of the GNS-construction for kernels and functions of positive
type.
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Theorem 3.2.2. Let ϕ ∶ X ×X → C be a kernel of positive type on a set X. Then there is a Hilbert
space H and a map ξ ∶ X → H ∶ x ↦ ξx whose image generates H such that

ϕ(x, y) = ⟨ξx , ξy ⟩

for all x, y ∈ X.
Conversely, if ξ ∶ X → H is a map into a Hilbert space whose image generates H, then (x, y) ↦ ⟨ξx , ξy ⟩
is a kernel of positive type on X. So there is a one-to-one correspondence between

• Kernels of positive type on X, and

• maps X → H whose image generates H (up to unitary conjugacy).

Let Γ be a discrete group and ϕ a function of positive type on Γ. Then there is a cyclic unitary
representation (H, ξ) of Γ such that

ϕ(g) = ⟨gξ, ξ⟩

for all g ∈ Γ.

Conversely, if (H, ξ) is a cyclic unitary representation of Γ, then g ↦ ⟨gξ, ξ⟩ is a function of positive
type on Γ. So there is a one-to-one correspondence between

• Positive type functions on Γ, and

• cyclic unitary representations of Γ (up to unitary conjugacy).

Proof. Let X be some set and ϕ ∶ X×X → C be a kernel of positive type. On CX define an sesquilinear
form by

⟨δx , δy ⟩ ∶= ϕ(x, y) .

This defines an inner product, since we have

⟨
n

∑
i=1

λiδxi ,
n

∑
i=1

λiδxi ⟩ =
n

∑
i ,j=1

λiλjϕ(xi , xj) ≥ 0 ,

for all elements ∑ni=1 λiδxi ∈ CX. After separation-completion we obtain a Hilbert space H and a map
ξ ∶ X → H ∶ x ↦ ξx ∶= δ̂x satisfying

ϕ(x, y) = ⟨ξx , ξy ⟩

for all x, y ∈ X. Note that H is generated by the image of ξ.

If ξ ∶ X → H is some map into a Hilbert space, then reversing the previous calculation, we see that
(x, y) ↦ ⟨δx , δy ⟩ is of positive type.

Now assume that Γ is a group and ϕ is a function of positive type on Γ. We obtain a Hilbert space H
and a map ξ ∶ Γ→ H whose image generates H and such that

ϕ(h−1g) = ⟨ξg, ξh⟩ ,

for all g, h ∈ Γ. For g ∈ Γ, the rule gξh ∶= ξgh defines a unitary representation of Γ on H, since

⟨ξgh, ξgk⟩ = ϕ((gk)−1gh) = ϕ(k−1h) = ⟨ξh, ξk⟩ ,
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for all h, k ∈ Γ. Let ξ ∶= ξe . Then ξ is a cyclic vector for the representation of Γ on H. Further, for all
g ∈ Γ, we have

ϕ(g) = ⟨ξg, ξe⟩ = ⟨gξ, ξ⟩ .

If (H, ξ) is a cyclic unitary representation of Γ, then we can apply the first part of the theorem to the
map Γ→ H ∶ g ↦ gξ. We obtain that (g, h) ↦ ⟨gξ, hξ⟩ is a kernel of positive type, which implies that
g ↦ ⟨gξ, ξ⟩ is a function of positive type on Γ.

The following proposition proves some useful permanence properties for positive type functions.

Proposition 3.2.3. Let ϕ,ψ be either kernels of positive type on a set X or functions of positive type
on a group Γ. Then the following kernels/functions are again of positive type:

• tϕ for all t ≥ 0,

• ϕ +ψ, and

• ϕ ⋅ψ.

Proof. We only need to consider kernels of positive type. Further, the only non-obvious claim is that
products of two kernels of positive type is a kernel of positive type. By Theorem 3.2.2, there are maps
into Hilbert spaces ξ ∶ X → H and η ∶ X → K satisfying ϕ(x, y) = ⟨ξx , ξy ⟩ and ψ(x, y) = ⟨ηx , ηy ⟩.
Considering the tensor product H ⊗K, we see that

(x, y) ↦ ⟨ξx ⊗ ηx , ξy ⊗ ηy ⟩ = ϕ(x, y)ψ(x, y)

is a kernel of positive type on X.

Proposition 3.2.4. Let Γ↷ X a pmp action and let ϕ ∶ Γ→ C be a normalised positive type function.
There is a well-defined normal L∞(X)-bimodular ucp map Φ ∶ L∞(X) ⋊ Γ → L∞(X) ⋊ Γ satisfying
Φ(ug) = ϕ(g)ug for all g ∈ Γ.

Proof. We first reduce to the case where X is a point. Assume that there is a trace preserving ucp
map Φ ∶ L(Γ) → L(Γ) such that Φ(ug) = ϕ(g)ug for all g ∈ Γ. Let Γ ↷ X be a pmp action. Inside
(L∞(X) ⋊ Γ)⊗L(Γ) consider L∞(X) ⊗ 1 and the elements ug ⊗ ug. They satisfy the abstract charac-
terisation of the group-measure space construction of Definition 1.4.17. Hence by Theorem 1.4.21,
there is a unique *-homomorphism ∆ ∶ L∞(X) ⋊ Γ → (L∞(X) ⋊ Γ)⊗L(Γ) satisfying ∆(f ) = f ⊗ 1 and
∆(ug) = ug⊗ug for all f ∈ L∞(X) and all g ∈ Γ. The map id⊗Φ is ∆(L∞(X))-bimodular and it satisfies

(id⊗Φ)(∆(ug)) = (id⊗Φ)(ug ⊗ ug) = ϕ(g)(ug ⊗ ug) = ϕ(g)∆(ug) .

In particular, id⊗Φ preserves ∆(L∞(X) ⋊Γ). So we can restrict id⊗Φ to a trace preserving ucp map
Φ̃ ∶ L∞(X)⋊Γ→ L∞(X)⋊Γ. Now Φ̃ is L∞(X)-bimodular and it satisfies Φ̃(ug) = ϕ(g)ug. This finishes
the proof under the assumption that Φ exists.

Theorem 3.2.2 gives a cyclic representation π of Γ on a Hilbert space H with cyclic vector ξ satisfying
⟨π(g)ξ, ξ⟩ = ϕ(g). By Fell’s absorption property from Theorem 1.4.15, the representation π ⊗ λ of
Γ on H ⊗ `2(Γ) extends to a representation of L(Γ). The right regular representation id ⊗ ρ, then
defines the structure of an L(Γ)-L(Γ)-bimodule on H ⊗ `2(Γ). Note that the vector ξ ⊗ δe is tracial
and generating. So Proposition 3.1.4 says that there is a normal tracial ucp map Φ ∶ L(Γ) → L(Γ)
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defined by ug ↦ Ad(L∗ξ⊗δe)(π(g)⊗ ug). In order to determine Φ(ug), it suffices to calculate Φ(ug)δe .
For all h ∈ Γ, we have

⟨Φ(ug)δe , δh⟩ = ⟨L∗ξ⊗δe(π(g) ⊗ ug)Lξ⊗δeδe , δh⟩
= ⟨(π(g) ⊗ ug)Lξ⊗δeδe ,Lξ⊗δeδh⟩
= ⟨(π(g) ⊗ ug)(ξ ⊗ δe), ξ ⊗ δh⟩
= ⟨π(g)ξ, ξ⟩⟨δg, δh⟩
= δg,hϕ(g) .

This implies that Φ(ug) = ϕ(g)ug, finishing the proof of the proposition.

3.3 The Haagerup property

The aim of this section is to introduce the Haagerup property and show that free groups of finite rank
do have this property. We will finish, by showing how the Haagerup property of a group Γ is reflected
in a group measure space construction L∞(X) ⋊ Γ.

Definition 3.3.1. A group Γ is said to have the Haagerup property, if there is a sequence of positive
type functions ϕi ∶ Γ→ C such that ϕi ∈ C0(Γ) for every i and ϕi → 1 pointwise.

Recall that the free group Fn of rank n is the set of (possibly empty) reduced words in letters
x1, . . . , xn, x

−1
1 , . . . , x−1

n with the product defined by concatenation and successive reduction (i.e. delet-
ing possible appearances of xix−1

i and x−1
i xi). Consider the graph T whose set of vertices is Fn as a

set of vertices of a graph, and with edges (g, gxi) for g ∈ Fn. Then T is a 2n-regular tree, on which
Fn acts by left multiplication. T is called the Cayley graph of Fn.

Theorem 3.3.2. For every n ∈ N, the free group Fn has the Haagerup property.

Proof. Consider the action Fn ↷ T on its Cayley graph. Denote by ρ the root of T and by E(T ) the
set of edges of T . Then

b(g)(e) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if e ∈ [ρ, gρ]
−1 if e ∈ [ρ, gρ]
0 otherwise

defines a function b ∶ Fn → `2(E(T )). We have

∥b(g) − b(h)∥2 = ∑
e∈E(T )

∣b(g)(e) − b(h)(e)∣2 = 2∣[gρ, hρ]∣ = 2d(g, h) ,

where d(g, h) denotes the distance between g, h ∈ Fn. We check that

b(gh) = gb(h) + b(g) ,

for all g, h ∈ Fn. The path first running through [ρ, gρ] and then [gρ, ghρ] crosses all edged from
[ρ, ghρ] and additionally crosses all edges from [ρ, gρ] ∩ [gρ, ghρ] in both directions. We obtain that

b(gh) = ∑
e∈[ρ,ghρ]

δe − δe = ∑
e∈[rho,gρ]

δe − δe + ∑
e∈[gρ,ghρ]

δe − δe = b(g) + gb(h) .
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So b ∶ Fn → `2(E(T )) is a 1-cocyle. In particular, it satisfies b(g−1) = −g−1b(g) for all g ∈ Fn. This
implies that

∥b(g−1h)∥ = ∥b(g−1) + g−1b(h)∥ = ∥g−1b(h) − g−1b(g)∥ = ∥b(h) − b(g)∥
for all g, h ∈ F2. We use next the formula ∥xi − η∥2 = ∥ξ∥2 + ∥η∥2 − 2Re⟨ξ, η⟩, which for element ξ, η
in every Hilbert space. For all λ1, . . . , λn ∈ C and all g1, . . . , gn ∈ Fn, we have

n

∑
i ,j=1

λiλj(∥b(gi)∥2 + ∥b(gj)∥2 − ∥b(gi) − b(gj)∥2) =
n

∑
i ,j=1

2Re⟨λib(gi), λjb(gj)⟩

= 2∥
n

∑
i=1

λib(gi)∥2

≥ 0 .

So (g, h) ↦ ∥b(g)∥2 + ∥b(h)∥2 − ∥b(g) − b(h)∥2 is a kernel of positive type on Fn. Since products of
kernels of positive type are again kernels of positive type by Proposition 3.2.3, this implies that

(g, h) ↦ e∥b(g)∥
2+∥b(h)∥2−∥b(g)−b(h)∥2 = ∑

k∈N

(∥b(g)∥2 + ∥b(h)∥2 − ∥b(g) − b(h)∥2)k
k!

is a kernel of positive type on Fn. Again take λ1, . . . , λn ∈ C and g1, . . . , gn ∈ Fn. Then
n

∑
i ,j=1

λiλje
−(∥b(gi)∥2+∥b(gj)∥2) = ∣

n

∑
i=1

λie
−∥b(gi)∥2 ∣2 ≥ 0 ,

So
(g, h) ↦ e−(∥b(g)∥

2+∥b(h)∥2)

is a kernel of positive type on Γ. We conclude by Proposition 3.2.3 that

(g, h) ↦ e−∥b(h
−1g)∥2 = e−∥b(h)−b(g)∥

2 = e∥b(g)∥
2+∥b(h)∥2−∥b(h)−b(g)∥2

e−(∥b(g)∥
2+∥b(h)∥2)

is a kernel of positive type. This means that g ↦ e−∥b(g)∥
2
is a function of positive type on Fn. Replacing

b by t1/2b for some t ≥ 0 in this argument, we obtain that that all the functions ϕt(g) ∶= e−t∥b(g)∥
2
,

g ∈ Fn are of positive type. We have ϕt(g) → 1 as t → 0 for all g ∈ Fn. Further, ∥b(g)∥ → ∞ if g →∞
implies that for all t ∈ (0,∞) we have ϕt(g) → 0 as g → ∞. This shows that Fn has the Haagerup
property.

Proposition 3.3.3. Let Γ ↷ X be a pmp action and let ϕi ∶ Γ → C be sequence of normalised
positive type functions converging to 1 pointwise. The normal ucp maps L∞(X)-bimodular maps
Φi ∶ L∞(X) ⋊ Γ→ L∞(X) ⋊ Γ satisfying Φi(ug) = ϕi(g)ug converge to id pointwise in ∥ ∥2.

Proof. Let x = ∑g∈Γ xgug an element in the unit ball of L∞(X) ⋊ Γ. Then Φi(x) = ∑g∈Γϕi(g)xgug.
Let ε > 0 and take F ⊂ Γ finite such that ∑g∈Γ∖F ∥xg∥2

2 < ε. For all i satisfying ∣ϕi(g) − 1∣2 ≤ ε/∣F ∣ for
all g ∈ F , we have the estimate

∥Φi(x) − x∥2
2 = ∑

g∈Γ

∥(ϕi(g) − 1)xg∥2
2

= ∑
g∈F

∥(ϕi(g) − 1)xg∥2
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤∥x∥2ε/∣F ∣

+ ∑
g∈Γ∖F

(ϕi(g) − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤2

∥xg∥2
2

≤ ∣F ∣∥x∥2ε/∣F ∣ + 2ε

= (∥x∥2 + 2)ε
Since ϕi → 1 pointwise, this shows that ∥Φi(x) − x∥2 → 0 , finishing the proof of the proposition.
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3.4 Rigid inclusions of von Neumann algebras and rigid actions

We are going to exploit the conclusion of Proposition 3.3.3 by opposing it with the following rigidity
property for inclusions of von Neumann algebras.

Definition 3.4.1. Let A ⊂ M be a tracial inclusion of von Neumann algebras. Then A ⊂ M is called
rigid if for all sequences of normal tracial ucp maps Φi ∶ M → M that converge to idM pointwise in
∥ ∥2, we have Φi → id uniformly in ∥ ∥2 on the unit ball (A)1.

Our source of rigid inclusions of von Neumann algebras is the relative property (T) for inclusions of
groups.

Definition 3.4.2. Let Λ ≤ Γ be an inclusion of groups. Then Λ ≤ Γ has relative property (T), if every
sequence of positive type functions ϕi ∶ Γ→ C converging pointwise to 1 converges uniformly on Λ.

Proposition 3.4.3. Let Λ ≤ Γ be an inclusion of groups with relative property (T). Then L(Λ) ⊂ L(Γ)
is rigid.

Proof. Let Φi ∶ L(Γ) → L(Γ) be a sequence of normal tracial ucp maps converging to id pointwise.
Let ϕi(g) ∶= τ(Φ(ug)u∗g). Then ϕi → 1 pointwise. For λ1, . . . , λn ∈ C and g1, . . . , gn ∈ Λ we have

n

∑
α,β=1

λαλβϕi(g−1
β gα) =

n

∑
α,β=1

λαλβτ(Φi(u∗gβugα)u
∗
gαugβ)

=
n

∑
α,β=1

λαλβ⟨u∗gβugα ⊗ u
∗
gαugβ , ξΦi

⟩

=
n

∑
α,β=1

⟨λαugα ⊗ u∗gα , λβugβ ⊗ u
∗
gβ

⟩

≥ 0 ,

where we made use of the L(Γ)-L(Γ)-bimodule HΦi
. We showed that ϕi is a positive type function.

Since Λ ≤ Γ has relative property (T), ϕi → 1 uniformly on Λ. Let ε > 0 and take i such that
∣ϕi(g) − 1∣ < ε for all g ∈ Λ. Write Hi = HΦi

with generating vector ξi = ξΦi
. We have

∣⟨ugξiu∗g , ξi⟩ − 1∣ = ∣ϕi(g) − 1∣ < ε .

So ∥ugξiu∗g − ξ∥2 = 2 − 2Re⟨ugξiu∗g , ξi⟩ < 2ε. Let ηi be the barycentre of the convex set
conv{ugξiu∗g ∣g ∈ Λ}. Then ηi = ugηiu

∗
g for all g ∈ Λ, implying that xηi = ηix for all x ∈ L(Λ).

Further ∥ηi − ξi∥2 < 2ε. If u ∈ U(L(Λ)), then

∥Φi(u) − u∥2
2 = 2 − 2Re⟨Φi(u), u⟩
= 2 − 2Re⟨uξiu∗, ξ⟩
= ∥uξi − ξiu∥2

2

= ∥u(ξi − ηi) − (ξi − ηi)u∥2
2

≤ (2∥ξi − ηi∥2)2

≤ 8ε .

Since every element in (L(Λ))1 is a sum of 4 unitaries, it follows that (Φi)i converges to id uniformly
on the unit ball of L(Λ).
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Theorem 3.4.4. The inclusion Z2 ≤ Z2 ⋊ SL(2,Z) has relative property (T).

Lemma 3.4.5. Let ν be a measure on R2 which is supported on [−1/2,1/2]2 and which is ε-invariant
under the transformations

( 1 1

0 1
) and ( 1 0

1 1
) .

Then ν(0) ≥ 1 − 8ε.

Proof. Denote by V1, V2, . . . , V8 the eight parts of the real plane between the coordinate axes and the
lines x = x and x = −x . We consider the ray which is on the positively oriented side of these parts
as belonging to them. The origin is not part of either of V1, V2, . . . , V8. This gives us the following
partition of R2 ∖ {0}.

V1

V2V3

V4

V5

V6 V7

V8

We show that ν(Vi) ≤ ε for all i , so that ν({0}) = 1 −∑8
i=1 ν(Vi) ≥ 1 − 8ε will follow.

Denote by α the linear transformation of R2 induced by the matrix

( 1 1

0 1
) .

Then α−1(V1) = V1 ∪ V2. Since ∥ν − ν ○α∥1 ≤ ε, it follows that ν(V2) ≤ ε. Since α−1(V8) = V7 ∪ V8, we
obtain ν(V7) ≤ ε, too. Using ε-invariance of ν under α−1, we obtain likewise that ν(V3), ν(V6) ≤ ε.
Considering the same argument with the linear transformation induced by

( 1 0

1 1
) ,

we see that ν(V1), ν(V4), ν(V5), ν(V8) ≤ ε. This finishes the proof of the lemma

Proof of Theorem 3.4.4. Write Γ = Z2 ⋊ SL(2,Z). Let ϕi ∶ Γ → C be a sequence of positive type
functions converging to 1 pointwise. By Theorem 3.2.2 there is a the cyclic representation repre-
sentation of Γ on a Hilbert space Hi with cyclic vector ξi such that ϕi(g) = ⟨gξi , ξi⟩ for all g ∈ Γ.
Using the isomorphism C∗(Z2) ≅ C(Ẑ2) ≅ C(T2), we obtain a representation of C(T2) on Hi , which
is equivariant with respect to the SL(2,Z)-action. The vector state f ↦ ⟨f ξi , ξi⟩ on C(T2) defines
a measure νi on T2. We identify T ⊂ C with the elements of length 1 and hence T2 ⊂ C2. For all
m,n ∈ Z, we have

∫
T2

zn1 z
m
2 dνi(z1, z2) = ϕ(n,m) → 1 ,
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showing by the Stone-Weierstrass theorem that ∫T2 f dνi → f (1,1) for all f ∈ C(T2). In particular, for
B ∶= {(e2πit1 , e2πit2) ∣ t1, t2 ∈ [−1/4,1/4]} we have νi(B) → 1. If g ∈ Γ, then

∣ ∫
T2

gf dνi − ∫
T2

f dνi ∣ = ∣⟨ugf u∗gξi , ξi⟩ − ⟨f ξi , ξi⟩∣

= ∣⟨f u∗gξi , u∗gξi⟩ − ⟨f ξi , ξi⟩ + ⟨f ξi , u∗gξi⟩ − ⟨f ξi , u∗gξi⟩∣
≤ ∣⟨f u∗gξi − f ξi , u∗gξi⟩∣ + ∣⟨f ξi , ξi − u∗gξi⟩∣
≤ ∥f u∗gξi − f ξi∥∥u∗gξi∥ + ∥f ξi∥∥ξi − u∗gξi∥
≤ 2∥f ∥∥u∗gξi − ξi∥ .

This shows that ∥gνi−νi∥1 → 0 for all g ∈ Γ. Let 0 < ε. Take i such that νi(B) ≥ 1−ε and ∥gνi−νi∥1 < ε
for all g ∈ F , where

F = {( 1 1

0 1
) , ( 1 −1

0 1
) , ( 1 0

−1 1
) , ( 1 0

−1 1
)} ⊂ SL(2,Z) .

Let ν̃i ∶= νi ∣B/νi(B). Then
∥ν̃i − νi∥1 = 2(1 − νi(B)) ≤ 2ε

and
∥gν̃i − ν̃i∥1 ≤ 5ε ,

for all g ∈ F . Since g[−1/4,1/4]2 ⊂ [−1/2,1/2]2 for all g ∈ F , we can consider ν̃i as measure on R2

supported in [−1/4,1/4]2, which is 5ε-invariant under the linear transformation induced by elements
from F . Now Lemma 3.4.5 implies that ν̃i((0,0)) ≥ 1 − 40ε. Since ∥ν̃i − νi∥ ≤ 2ε, this shows that
νi((1,1)) ≥ 1 − 42ε. Hence, ∥νi − δ(1,1)∥1 ≤ 2(1 − νi((1,1))) ≤ 84ε. It follows that

∣ϕi(m,n) − 1∣ = ∣∫
T2

zm1 z
n
2 dνi(z1, z2) − ∫

T2

zm1 z
n
2 dδ(1,1)∣ ≤ ∥νi − δ(1,1)∥1 sup

z1,z2∈T
∣zm1 zn2 ∣ ≤ 84ε .

This proves that ϕi → 1 uniformly on Z2 as i →∞.

3.5 A uniqueness of Cartan result

Theorem 3.5.1. Let Γ↷ X and Λ↷ Y be free ergodic pmp actions and assume that

• Γ has the Haagerup property and

• L∞(Y ) ⊂ L∞(Y ) ⋊ Λ is rigid.

If α ∶ L∞(X)⋊Γ
≅→ L∞(Y )⋊Λ, then there is a unitary u ∈ U(L∞(Y )⋊Λ such that uα(L∞(X))u∗ = L∞(Y ).

In particular, Γ↷ X and Λ↷ Y are orbit equivalent.

Proof. We identify L∞(X)⋊Γ = L∞(Y )⋊Λ =M via the isomorphism α. Write A = L∞(Y ), B = L∞(X).
Denote by ϕi ∶ Γ → C a sequence of normalised positive type functions in c0(Γ) such that ϕi → 1

pointwise. By Proposition 3.2.4 there are normal B-modular trace preserving ucp maps Φi ∶ M → M

such that Φi(ug) = ϕi(g)ug for all g ∈ Γ. Proposition 3.3.3 says that Φi → idM pointwise in ∥ ∥2.
Since Λ ↷ Y is rigid, also A ⊂M is rigid by Theorem 3.4.3. So Φi → id uniformly in ∥ ∥2 on the unit
ball of A.
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Assume that there is a sequence of unitaries (un)n is A such that EB(xuny) → 0 in ∥ ∥2 for all x, y ∈M.
Then in particular (un)g = EB(unu∗g) → 0 in ∥ ∥2 for all g ∈ Γ. Let 0 < ε < 1/5 and take i such that
∥Φi(un)−un∥2 < ε for all n ∈ N. Let F ⊂ Γ be a finite subset such that ϕi(g) < ε for all g ∈ Γ∖F . Now
take n such that ∥(un)g∥2

2 < ε/∣F ∣ for all g ∈ F . Then

1 = ∥un∥2
2

≤ (∥un −Φi(un)∥2 + ∥Φi(un)∥2)2

≤ ∥Φi(un)∥2
2 + (ε2 + 2ε)

= ∥∑
g∈Γ

(un)gΦi(ug)∥2
2 + (ε2 + 2ε) B-modularity

= ∥∑
g∈Γ

ϕi(g)(un)gug∥2
2 + (ε2 + 2ε)

= ∑
g∈F

∥ϕi(g)(un)g∥2
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤∣ϕi(g)∣2ε/F

+ ∑
g∈Γ∖F

∥ϕi(g)(un)g∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤ε2∥(un)g)∥2

2

+(ε2 + 2ε)

≤ ε + ε2 + ε2 + 2ε

< 1 .

This is a contradiction. So Theorem 2.6.1 shows that A ≺M B, which implies by Theorem 2.6.3 that
there is a unitary u ∈ U(M) such that uAu∗ = B. In particular, Γ ↷ X and Λ ↷ Y are orbit equivalent
by Theorem 1.4.37.

3.6 Cost

In view of Theorem 3.5.1, we now want to introduce orbit equivalence invariants for group actions.
Gaboriau introduced an invariant, generalising the rank of a group. We will introduce this invariant —
cost — and then prove that the cost of every free pmp action of a free group equals the rank of the
free group.

Definition 3.6.1. Let (X,µ) be a standard probability measure space without atoms. A countable
probability measure preserving equivalence relation is an equivalence relation R on X such that R ⊂
X ×X is measurable, R has countable classes and such that for every partial isomorphism ϕ ∶ A → B

with A,B ⊂ X and graphϕ ⊂ R we have µ(A) = µ(B). A countable probability measure preserving
equivalence relation is called II1 equivalence relation if it has almost surely infinite classes.

Two countable pmp equivalence relations R ⊂ X ×X and S ⊂ Y × Y are called isomorphic if there is
an isomorphism ∆ ∶ X → Y such that (∆ ×∆)(R) = S.

Example 3.6.2. Let Γ
α↷ X be a free pmp action of an infinite discrete group. Then R = R(Γ↷ X) =

{(x, gx) ∣ x ∈ X,g ∈ Γ} is a II1 equivalence relation.

Indeed, R is an equivalence relation, since Γ is a group. Further, R = ⋃g∈Γ graphαg is measurable as
a subset of X ×X. Since Γ is countable, it is immediate that R has countable classes. These classes
are almost surely infinite, since Γ acts freely. Finally if ϕ ∶ A → B is a partial isomorphism between
A,B ⊂ X such that graphϕ ⊂ R, then A = ⊔g∈ΓAg with ϕ∣Ag = αg ∣Ag , so that µ(A) = µ(B) follows.

The next proposition is obvious from the definitions.

Proposition 3.6.3. Let Γ ↷ X and Λ ↷ Y be free pmp actions. Then R(Γ ↷ X) ≅ R(Λ ↷ Y ) if and
only if Γ↷ X ∼OE Λ↷ Y .
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Definition 3.6.4. Let R be a II1 equivalence relation. A graphing of R is a family Φ of maps
ϕ ∶ Aϕ → Bϕ of partial isomorphism with graph(ϕ) ⊂ R such that R is generated by ⋃ϕ∈Φ graphϕ.

We define the cost of a graphing Φ as C(Φ) = ∑ϕ∈ΦAϕ and the cost of the equivalence relation R as
C(R) = infΦ graphing of R C(Φ).

Let us remark that cost is invariant under isomorphism of II1 equivalence relations. Further, it is a
generalisation of the rank of a group. In fact, if Γ = ⟨S⟩ is a finitely generated group and Γ

α↷ X is a
free pmp action, then Φ = αg)g∈S is a graphing of R(Γ↷ X) with cost ∣S∣.
The following is a special case of a result of Gaboriau.

Theorem 3.6.5. Let Fn ↷ X be a free pmp action and R = R(Fn ↷ X). Then C(R) = n.

Proof. We already remarked that C(R) ≤ n, so we have to show the converse inclusion. Let S ⊂ Fn
be its natural set of generators and denote by µ the probabilty measure on X. Cutting and pasting
we may assume that every graphing is of the form (ϕg ∶ Ag → Bg)g∈Fn with ϕg = αg ∣Ag . Let ε > 0.
We define a partial ordering on graphings Φ of R satisfying C(Φ) ≤ C(R) + ε by

Φ ≤ Φ′ if and only if ∀g ∈ S ∶ Ag ⊂ A′g and ∀g ∈ Fn ∖ S ∶ Ag ⊃ A′g .

We may find a maximal element Φ for this order and we shall prove that Ag = X for all g ∈ S. This
will finish the proof of the theorem.

So assume from now on for a contradiction, that Ah ≠ X for some h ∈ S. Since Φ generates R, we
find partial isomorphisms ϕi ∶ Ai → Bi = Ai+1, i ∈ {1, . . . , l} such that

• A1 ⊂ A,

• there are elements gi ∈ Fn such that ϕi is the restriction of ϕgi for all i ,

• ϕl ○ϕl−1 ○ ⋯ ○ϕ1 = αh∣A1
.

Since Fn ↷ X is free, it follows that gl⋯g1 = h. Hence there is k ∈ {1, . . . , l} and there are gk,1, gk,2 ∈ Fn
such that

• gk = gk,1hgk,2,

• glgl−1⋯gk+1gk,1 = e, and

• gk,2gk−1⋯g1 = e.

First assume that gk ∈ S is a generator. Then gk = h. Further, gk−1⋯g1 = e, so it follows that
A1 = Ak ⊂ Ah, in contradiction to the assumption A1 ⊂ A = X ∖ Ah. We showed that gk ∉ S.
Since glgl−1⋯gk+1 = g−1

k,1 and gk−1⋯g1 = g−1
k,2, we may remove then ϕk = ϕgk ∣AK from Φ and add

instead αh∣gk,2gk−1...g1A1
to Φ and we obtain a graphing Φ′ of R. Since gk,2gk−1 . . . g1 = e, we have

αh∣gk,2gk−1...g1A1
= αh∣A1

, so that Φ < Φ′. This contradicts the maximality of Φ and finishes the proof
of the theorem.
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3.7 Some examples of non-isomorphic group measure space constructions

In this section we are going to exploit Theorem 3.5.1 together with Theorem 3.6.5. We are going
to construct rigid free ergodic pmp actions of free groups of arbitrary rank. Continuing our example
from Section 3.4, we will construct these as restrictions of SL(2,Z) ↷ T2 to certain finite index free
subgroups.

We will make use of the following proposition, for which we do not give a proof.

Proposition 3.7.1. Let Γ↷ X be a rigid free ergodic pmp action. If Λ ≤ Γ is a finite index subgroup,
then also Λ↷ X is rigid.

Let us exhibit free subgroups of arbitrary rank in SL(2,Z).

Proposition 3.7.2. Let Γ be the subgroup of SL(2,Z) generated by the matrices

( 1 2

0 1
) ( 1 0

2 1
) .

Then Γ ≅ F2.

In order to give a proof of this proposition, we will make use of the so called ping-pong lemma. This
is a very useful result, which appears in different forms in group theory.

Lemma 3.7.3. Let Γ be a group generated by subgroups Γ1, . . . ,Γn ≤ Γ, such that the product of
their orders is at least 6. Assume that there is an action Γ ↷ X on a set such that there are subsets
X1, . . . ,Xn ⊂ X satisfying (Γi ∖ {e})Xj ⊂ Xi for all i ≠ j . Then Γ = Γ1 ∗⋯ ∗ Γn.

Proof. We may assume that all Γ1, . . . ,Γn are non-trivial. If n = 1, we are done. If n = 2, then either
Γ1 or Γ2 has order at least three and we may assume that this is Γ1. We will show that every non-trivial
reduced word in the elements from Γ1, . . . ,Γn acts non-trivially on X. This will show that the natural
homomorphism Γ1 ∗ ⋯ ∗ Γn → Γ is injective. Since it is surjective by assumption, this will finish the
proof.

Let w be a non-trivial reduced word in the elements of Γ1, . . . ,Γn. Let us first assume that the first
and the last letter of w are from the same Γi . Then wXj ⊂ Xi for i ≠ j , by our assumptions. So
w ≠ e in Γ. Now let w be arbitrary. If n ≥ 3 and the first and the last letter of w are from Γi and Γi ′

respectively, we consider wXj ⊂ Xi for some j ≠ i , i ′. Again, we obtain w ≠ e in Γ. If n = 2, we can
conjugate w with some element from Γ1 in order to obtain a word which does start and end with an
element from Γ1. To this end recall that ∣Γ1∣ ≥ 3. We can hence find an element g ∈ Γ1 which neither
equals the inverse of the first element of w nor equals the last element of w . (Only one of these two
lies in Γ1). We obtain by the previous argument that gwg−1 ≠ e in Γ, so that w ≠ e in Γ. This finishes
the proof of the lemma.

Proof of Proposition 3.7.2. We apply the Ping-Pong Lemma to the action Γ ≤ SL(2,Z) ↷ R2. Let

Γ1 = ⟨( 1 2

0 1
)⟩ Γ2 = ⟨( 1 0

2 1
)⟩ .

Further let
X1 = {(x, y)t ∈ R2 ∣ ∣x ∣ > ∣y ∣} X2 = {(x, y)t ∈ R2 ∣ ∣y ∣ > ∣x ∣} .

Then (Γ1∖{e})X2 ⊂ X1 and (Γ2∖{e})X1 ⊂ X2. Since Γ1,Γ2 are both infinite cyclic groups, it follows
from the Ping-Pong Lemma 3.7.3 that Γ = Γ1 ∗ Γ2 ≅ F2.
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We want to determine the index of Γ from Proposition 3.7.2 inside SL(2,Z).

Proposition 3.7.4. Let Γ be the subgroup of SL(2,Z) generated by the matrices

( 1 2

0 1
) and ( 1 0

2 1
) .

Then Γ ≤ SL(2,Z) has index 12.

Proof. Consider the so called congruence subgroup Γ(2) ∶= ker(SL(2,Z) ↠ SL(Z/2Z)). Since
SL(2,Z/2Z) has order 6, it follows that [Γ ∶ Γ(2)] = 6. We will show that Γ(2) is generated by
the matrices

( −1 0

0 −1
) , ( 1 2

0 1
) and ( 1 0

2 1
) .

It then follows that [Γ(2) ∶ Γ] = 2, implying the proposition.

Every element in Γ(2) must be of the form

g = ( 1 + 2k 2l

2m 1 + 2n
)

for some k, l ,m, n ∈ Z. If l = 0 or m = 0 then it is clear that g ∈ Γ(2). Otherwise, we show that we can
multiply from the left with matrices

( 1 ±2

0 1
) or ( 1 0

±2 1
)

in order to reduce the absolute value of the off-diagonal entries. We have

( 1 ±2

0 1
)( 1 + 2k 2l

2m 1 + 2n
) = ( 1 + 2(k ± 2m) 2(l ± (1 + 2n))

2m 1 + 2n
)

and

( 1 0

±2 1
)( 1 + 2k 2l

2m 1 + 2n
) = ( 1 + 2k 2l

2(m ± (1 + 2k) 1 + 2(n ± 2l) ) .

So it is indeed possible to reduce the absolute value of one of the off-diagonal entries, unless ∣1+2n∣ ≥
∣2l ∣ and ∣1 + 2k ∣ ≥ ∣2m∣. But this cannot happen as the following calculations show. If ∣1 + 2n∣ = ∣2l ∣
and ∣1 + 2k ∣ = ∣2m∣, then

det( 1 + 2k 2l

2m 1 + 2n
) = (1 + 2k)(1 + 2n) − 4lm ∈ {0,8lm} .

If one of the inequalities ∣1 + 2n∣ ≥ ∣2l ∣ and ∣1 + 2k ∣ ≥ ∣2m∣ is proper, we obtain

∣det( 1 + 2k 2l

2m 1 + 2n
)∣ ≥ ∣1 + 2k ∣∣1 + 2n∣ − ∣4lm∣

≥ min{(∣2l ∣ + 1)∣2m∣, ∣2l ∣(∣2m∣ + 1)} − ∣4lm∣
= min{∣2m∣, ∣2l ∣} .

Since l ,m ≠ 0, this is a contradiction, finishing the proof.
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We showed that SL(2,Z) has a finite index subgroup isomorphic with F2. The following theorem of
Nielsen-Schreier, which we will not prove, then provides finite index subgroups of SL(2,Z) or arbitrary
rank.

Theorem 3.7.5 (Nielsen-Schreier). Let Γ ≤ Fn be some subgroup of index k . Then Γ ≅ Fm for
m = (n − 1)k + 1.

Note that the kernel of F2 → Z/kZ, sending the first generator to 1 and the second generator to 0

has index k inside F2. So F2 contains finite index free groups of rank (2 − 1)k + 1 = k + 1 for every
k ≥ 2.

Summarising our results up to now, we showed the following statement: for every n ∈ N≥2 there is a
rigid free pmp action of Fn ↷ T2 coming from the restiction of SL(2,Z) ↷ T2. Note that if Λ ≤ Γ

is a finite index inclusion and Γ ↷ X is an ergodic pmp action, then any Λ-invariant set must have
measure at least [Γ ∶ Λ]−1. We can hence find for every n ∈ N≥2 some rigid freeergodic pmp action
of Fn. We can now combine Theorems 3.6.5 and 3.5.1 with our work in this section to obtain the
following conclusion.

Theorem 3.7.6. There are free ergodic pmp actions Fn ↷ X of non-abelian free groups of arbitrary
rank such that L∞(X) ⋊ Fn ≅ L∞(X) ⋊ Fm implies n = m.
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