Exercises on Lie groups

Spring term 2018, Sheet 11

Hand in before 10 o'clock on 11th May 2018 Mail box of Sven Raum in MA B2 475 Sven Raum Gabriel Jean Favre

Exercise 1

Let G be a connected Lie group. Show that G is solvable if and only if Lie(G) is solvable.

Exercise 2

In this exercise we identify the topology on the automorphism group of a connected Lie group. Let G be a connected Lie group with Lie algebra $\mathfrak{g} = \operatorname{Lie}(G)$ and universal cover \tilde{G} . We saw that there is an isomorphism of abstract groups $\operatorname{Aut}(\tilde{G}) \cong \operatorname{Aut}(\mathfrak{g}) \subset \operatorname{GL}(\mathfrak{g})$.

(i) Show that $Aut(\mathfrak{g})$ is closed in $GL(\mathfrak{g})$

Since closed subgroups of Lie groups have a natural structure of a Lie group, we find that $Aut(\tilde{G})$ is a Lie group. We want to obtain a Lie group structure on Aut(G). Denote by $Z \leq \tilde{G}$ the central subgroup satisfying $\tilde{G}/Z = G$. Then there is a natural isomorphism

$$\operatorname{Aut}(G) \cong \{ \alpha \in \operatorname{Aut}(\tilde{G}) \mid \alpha(Z) = Z \}.$$

We want to show that this is a closed subgroup, so that also Aut(G) becomes a Lie group. For a topological group H the space C(H, H) of continuous maps from H to itself is endowed with the topology of uniform convergence on compact subsets whose basis is

 $N_{C,U,f_0} = \{ f \in \mathcal{C}(H,H) \mid \forall g \in f(g) f_0^{-1}(g) \in U \}$

for $C \subset H$ compact, $U \subset H$ open and $f_0 \in C(H, H)$.

- (ii) Let H be a connected simply connected Lie group. Show that Aut(H) has the subspace topology inherited from $Aut(H) \subset C(H, H)$.
- (iii) Conclude that $Aut(G) \subset Aut(\tilde{G})$ is closed

We can now endow Aut(G) with the structure of a Lie group. It remains to identify its topology in the same way as we just did for conneced simply connected Lie groups.

(iv) Let H be a connected Lie group. Show that Aut(H) has the subspace topology inherited from $Aut(H) \subset C(H, H)$.

Exercise 3

In this exercise we investigate different aspects of the semi-direct product construction for Lie groups. Let H, N be Lie groups and $\alpha : H \to Aut(N)$ a Lie group homomorphism.

(i) Show that the group theoretical semi-direct product $N \rtimes_{\alpha} H$ becomes a Lie group when equipped with the differential structure of the manifold $N \times H$.

(ii) Show the universal property of the semi-direct product: for every pair of Lie group homomrphisms $\varphi_N : N \to G$ and $\varphi_H : H \to G$ such that $\varphi_H(h)\varphi_N(n)\varphi_H(h)^{-1} = \varphi_N(\alpha_h(n))$ for all $n \in N$, $h \in H$ there is a unique extension to a Lie group homomorphism of $N \rtimes_{\alpha} H$

Exercise 4.

In this exercise we investigate the semi-direct product decomposition of a Lie group. Given a Lie group G with a closed normal subgroup $N \trianglelefteq G$ and a closed subgroup $H \le G$ such that $N \cap H = \{e\}$ and NH = G, we say that $G = N \rtimes H$ is a semi-direct product.

- (i) Let G be a Lie group. Show that the group of inner automorphism $Inn(G) \trianglelefteq Aut(G)$ is a Lie subgroup.
- (ii) Let $N \leq G$ be a closed normal subgroup of a Lie group. Show that the map $G \rightarrow Aut(N)$ induced by conjugation is a Lie group homomorphism.
- (iii) Let $N \leq G$ be a closed normal Lie subgroups and $H \leq G$ be some Lie subgroup. Show that $G = N \rtimes H$ if and only if there is an isomorphism $N \rtimes_{Ad} H \rightarrow G$ extending the inclusions of N and H.