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Exercise 1
LetG be a connected Lie group. Show thatG is solvable if and only if Lie(G) is solvable.

Exercise 2
In this exercise we identify the topology on the automorphism group of a connected Lie group. Let G
be a connected Lie group with Lie algebra g = Lie(G) and universal cover G̃. We saw that there is an
isomorphism of abstract groups Aut(G̃) ≅ Aut(g) ⊂ GL(g).

(i) Show that Aut(g) is closed inGL(g)

Since closed subgroups of Lie groups have a natural structure of a Lie group, we find that Aut(G̃) is a
Lie group. We want to obtain a Lie group structure on Aut(G). Denote by Z ≤ G̃ the central subgroup
satisfying G̃/Z = G. Then there is a natural isomorphism

Aut(G) ≅ {α ∈ Aut(G̃) ∣ α(Z) = Z} .

We want to show that this is a closed subgroup, so that alsoAut(G) becomes a Lie group. For a topological
groupH the spaceC(H,H) of continuous maps fromH to itself is endowed with the topology of uniform
convergence on compact subsets whose basis is

NC,U,f0 = {f ∈ C(H,H) ∣ ∀g ∈∶ f(g)f−10 (g) ∈ U}

for C ⊂H compact, U ⊂H open and f0 ∈ C(H,H).

(ii) Let H be a connected simply connected Lie group. Show that Aut(H) has the subspace topology
inherited from Aut(H) ⊂ C(H,H).

(iii) Conclude that Aut(G) ⊂ Aut(G̃) is closed

We can now endowAut(G)with the structure of a Lie group. It remains to identify its topology in the same
way as we just did for conneced simply connected Lie groups.

(iv) Let H be a connected Lie group. Show that Aut(H) has the subspace topology inherited from
Aut(H) ⊂ C(H,H).

Exercise 3
In this exercise we investigate different aspects of the semi-direct product construction for Lie groups. Let
H,N be Lie groups and α ∶H → Aut(N) a Lie group homomorphism.

(i) Show that the group theoretical semi-direct product N ⋊α H becomes a Lie group when equipped
with the differential structure of the manifoldN ×H .



(ii) Show the universal property of the semi-direct product: for every pair of Lie group homomrphisms
ϕN ∶ N → G and ϕH ∶ H → G such that ϕH(h)ϕN(n)ϕH(h)−1 = ϕN(αh(n)) for all n ∈ N , h ∈ H
there is a unique extension to a Lie group homomorphism ofN ⋊αH

Exercise 4.
In this exercise we investigate the semi-direct product decomposition of a Lie group. Given a Lie group G
with a closed normal subgroupN ⊴ G and a closed subgroupH ≤ G such thatN ∩H = {e} andNH = G,
we say thatG = N ⋊H is a semi-direct product.

(i) Let G be a Lie group. Show that the group of inner automorphism Inn(G) ⊴ Aut(G) is a Lie sub-
group.

(ii) LetN ⊴ G be a closed normal subgroup of a Lie group. Show that the mapG→ Aut(N) induced by
conjugation is a Lie group homomorphism.

(iii) LetN ≤ G be a closed normal Lie subgroups andH ≤ G be some Lie subgroup. Show thatG = N ⋊H
if and only if there is an isomorphismN ⋊AdH → G extending the inclusions ofN andH .
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