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Exercise 1

Let G be a connected Lie group. Show that G is solvable if and only if Lie(G) is solvable.

Exercise 2

In this exercise we identify the topology on the automorphism group of a cgnnected Lie group. Let G
be a connected Lie group with Lie algebra g = Lie(G) and universal cover G. We saw that there is an
isomorphism of abstract groups Aut(G) = Aut(g) c GL(g).

(i) Show that Aut(g) is closed in GL(g)

Since closed subgroups of Lie groups have a natural structure of a Lie group, we find that Aut(é) is a
Lie group. We want to obtain a Lie group structure on Aut(G). Denote by Z < G the central subgroup
satisfying G/Z = G. Then there is a natural isomorphism

Aut(G) 2 {ae Aut(G) | a(Z2) = Z}.

We want to show that this is a closed subgroup, so that also Aut(G) becomes a Lie group. For a topological
group H the space C(H, H) of continuous maps from H to itself is endowed with the topology of uniform
convergence on compact subsets whose basis is

New,s, ={f € C(H,H) | Vg e f(9)f5" (9) €U}
for C' ¢ H compact, U ¢ H openand fo € C(H, H).
(ii) Let H be a connected simply connected Lie group. Show that Aut(H) has the subspace topology
inherited from Aut(H) c C(H, H).
(iii) Conclude that Aut(G) c Aut(G) is closed

We can now endow Aut(G) with the structure of a Lie group. It remains to identify its topology in the same
way as we just did for conneced simply connected Lie groups.

(iv) Let H be a connected Lie group. Show that Aut(H) has the subspace topology inherited from
Aut(H)cC(H,H).

Exercise 3
In this exercise we investigate different aspects of the semi-direct product construction for Lie groups. Let
H, N be Lie groups and «: H - Aut(N) a Lie group homomorphism.

(i) Show that the group theoretical semi-direct product N x, H becomes a Lie group when equipped
with the differential structure of the manifold N x H.



(ii) Show the universal property of the semi-direct product: for every pair of Lie group homomrphisms
on: N - Gand g : H— G suchthat o (h)on(n)eg(h)™ = pn(an(n)) foralln e N, he H
there is a unique extension to a Lie group homomorphism of NV %, H

Exercise 4.

In this exercise we investigate the semi-direct product decomposition of a Lie group. Given a Lie group GG
with a closed normal subgroup N < G and a closed subgroup H < G'suchthat Nn H = {e} and NH =G,
we say that G = NV x H is a semi-direct product.

(i) Let G be a Lie group. Show that the group of inner automorphism Inn(G) < Aut(G) is a Lie sub-
group.

(ii) Let N <4 G be a closed normal subgroup of a Lie group. Show that the map G — Aut(N) induced by
conjugation is a Lie group homomorphism.

(iii) Let N < G be aclosed normal Lie subgroups and H < G be some Lie subgroup. Show that G = N x H
if and only if there is an isomorphism N x 44 H — G extending the inclusions of N and H.



